题目内容

【题目】根据题意解答
(1)如图1的图形我们把它称为“8字形”,请说明∠A+∠B=∠C+∠D.
(2)阅读下面的内容,并解决后面的问题: 如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=36°,∠ADC=16°,求∠P的度数.
解:∵AP、CP分别平分∠BAD、∠BCD
∴∠1=∠2,∠3=∠4
由(1)的结论得:
①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D
∴∠P= (∠B+∠D)=26°.
①如图3,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,请猜想∠P的度数,并说明理由.
②在图4中,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的关系,直接写出结论,无需说明理由.
③在图5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的关系,直接写出结论,无需说明理由.

【答案】
(1)解:∵∠A+∠B+∠AOB=180°,∠C+∠D+∠COD=180゜,

∴∠A+∠B+∠AOB=∠C+∠D+∠COD,

∵∠AOB=∠COD,

∴∠A+∠B=∠C+∠D


(2)解:①∠P=26゜.

∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,

∴∠1=∠2,∠3=∠4

由(1)的结论得:∠PAD+∠P=∠PCD+∠D ①,∠PAB+∠P=∠PCB+∠B ②,

∵∠PAB=∠1,∠1=∠2,

∴∠PAB=∠2,

∴∠2+∠P=∠3+∠B ③,

①+③得∠2+∠P+∠PAD+∠P=∠3+∠B+∠PCD+∠D,即2∠P+180°=∠B+∠D+180°,

∴∠P= (∠B+∠D )=26°.

②如图4,

∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,

∴∠1=∠2,∠3=∠4,

∴(180°﹣2∠1)+∠B=(180°﹣2∠4)+∠D,

在四边形APCB中,(180°﹣∠1)+∠P+∠4+∠B=360°,

在四边形APCD中,∠2+∠P+(180°﹣∠3)+∠D=360°,

∴2∠P+∠B+∠D=360°,

∴∠P=180°﹣ (∠B+∠D);

③如图5,

∵AP平分∠BAD,CP平分∠BCD的外角∠BCE,

∴∠1=∠2,∠3=∠4,

∵(∠1+∠2)+∠B=(180°﹣2∠3)+∠D,

∠2+∠P=(180°﹣∠3)+∠D,

∴2∠P=180°+∠D+∠B,

∴∠P=90°+ (∠B+∠D).


【解析】(1)根据三角形的内角和等于180°列式整理即可得证;(2)根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据(1)的结论列出整理即可得解;①表示出∠PAD和∠PCD,再根据(1)的结论列出等式并整理即可得解;②根据四边形的内角和等于360°可得(180°﹣∠1)+∠P+∠4+∠B=360°,∠2+∠P+(180°﹣∠3)+∠D=360°,然后整理即可得解;③根据(1)的结论∠B+∠BAD=∠D+∠BCD,∠PAD+∠P=∠D+∠PCD,然后整理即可得解.
【考点精析】认真审题,首先需要了解三角形的内角和外角(三角形的三个内角中,只可能有一个内角是直角或钝角;直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角),还要掌握三角形的外角(三角形一边与另一边的延长线组成的角,叫三角形的外角;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角)的相关知识才是答题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网