题目内容
【题目】数据9,11,8,12,7,13的极差是_____.
【答案】6
【解析】
根据极差的定义求解即可.
数据9,11,8,12,7,13的极差是13﹣7=6.
故答案为:6.
【题目】如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形AnOCnBn的对角线交点的坐标为 .
【题目】如图1,某温室屋顶结构外框为△ABC,立柱AD垂直平分横梁BC,∠B=30°,斜梁AC=4m,为增大向阳面的面积,将立柱AD增高并改变位置后变为EF,使屋顶结构外框由△ABC变为△EBC(点E在BA的延长线上)如图2所示,且立柱EF⊥BC,若EF=3m,则斜梁增加部分AE的长为m.
【题目】如图,学校准备新建一个长度为L的读书长廊,并准备用若干块带有花纹和没有花纹的两种规格大小相同的正方形地面砖搭配在一起,按图中所示的规律拼成图案铺满长廊,已知每个小正方形地面砖的边长均为0.3m.(1)按图示规律,第一图案的长度L1=;第二个图案的长度L2=;(2)请用代数式表示带有花纹的地面砖块数n与走廊的长度Ln(m)之间的关系;(3)当走廊的长度L为30.3m时,请计算出所需带有花纹图案的瓷砖的块数.
【题目】阅读下面的解题过程: 已知 = ,求 的值.解:由 = 知x≠0,所以 =2,即x+ =2.∴ =x2+ =(x+ )2﹣2=22﹣2=2,故 的值为 评注:该题的解法叫做“倒数法”,请你利用“倒数法”解下面的题目:已知 = ,求 的值.
【题目】为了运用平方差公式计算(x+2y﹣1)(x﹣2y+1),下列变形正确的是( )
A. [x﹣(2y+1)]2 B. [x+(2y﹣1)][x﹣(2y﹣1)]
C. [(x﹣2y)+1][(x﹣2y)﹣1] D. [x+(2y﹣1)]2
【题目】已知不等式 的最小整数解为方程 的解,求代数式 的值.
【题目】小明每天早晨在8时前赶到离家1千米的学校上学.一天,小明以80米/分的速度从家出发去学校,5分钟后,小明爸爸发现小明的语文书落在家里,于是,立即以180米/分的速度去追赶.则小明爸爸追上小明所用的时间为( )A.2分钟B.3分钟C.4分钟D.5分钟
【题目】在下列图形性质中,矩形不一定具有的是( )
A.对角线互相平分且相等B.四个角相等
C.既是轴对称图形,又是中心对称图形D.对角线互相垂直平分