题目内容
利用换元法解下列方程:
(1)(x+2)2+6(x+2)-91=O;
(2)x2-(1+2
)x-3+
=0.
(1)(x+2)2+6(x+2)-91=O;
(2)x2-(1+2
| 3 |
| 3 |
分析:(1)先设x+2=y,再把原方程进行变形,求出y的值,再把y的值代入x+2=y,即可求出x的值;
(2)先把方程的左边因式分解,得出x-(3+
)=0,x+(2-
)=0,再求出x的值即可.
(2)先把方程的左边因式分解,得出x-(3+
| 3 |
| 3 |
解答:解:(1)(x+2)2+6(x+2)-91=O;
设x+2=y,则原方程可变形为:
y2+6y-91=0,
解得:y1=7,y2=-13,
当y1=7时,x+2=7,
x1=5,
当y2=-13时,x+2=-13,
x2=-15;
(2)x2-(1+2
)x-3+
=0,
[x-(3+
)][x+(2-
)]=0,
x-(3+
)=0,x+(2-
)=0,
x1=3+
,x2=-2+
.
设x+2=y,则原方程可变形为:
y2+6y-91=0,
解得:y1=7,y2=-13,
当y1=7时,x+2=7,
x1=5,
当y2=-13时,x+2=-13,
x2=-15;
(2)x2-(1+2
| 3 |
| 3 |
[x-(3+
| 3 |
| 3 |
x-(3+
| 3 |
| 3 |
x1=3+
| 3 |
| 3 |
点评:此题考查了换元法和因式分解法解一元二次方程,换元法是把某个式子看作一个整体,用一个字母去代替它,实行等量替换.
练习册系列答案
相关题目