题目内容
【题目】已知多项式3x2+my-8与多项式-nx2+2y+7的差中,不含有x,y,求nm+mn的值。
【答案】3.
【解析】先求出两个多项式的差,再根据题意,不含有x、y,即含x、y项的系数为0,求得m,n的值,再代入nm+mn求值即可.
解:(3x2+my﹣8)﹣(﹣nx2+2y+7)
=3x2+my﹣8+nx2﹣2y﹣7
=(3+n)x2+(m﹣2)y﹣15,
因为不含有x、y,所以3+n=0,m﹣2=0,
解得n=﹣3,m=2,
把n=﹣3,m=2代入nm+mn=(﹣3)2+2×(﹣3)=9﹣6=3.
答:nm+mn的值是3.
练习册系列答案
相关题目