题目内容
边长都为整数的△ABC≌△DEF,AB与DE是对应边,AB=2,BC=4.若△DEF的周长为偶数,则DF的长为( )
A. 3 B. 4 C. 5 D. 3或4或5
数学问题:计算(其中m,n都是正整数,且m≥2,n≥1).
探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究.
探究一:计算.
第1次分割,把正方形的面积二等分,其中阴影部分的面积为;
第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为+;
第3次分割,把上次分割图中空白部分的面积继续二等分,…;
…
第n次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为+++…+,最后空白部分的面积是.
根据第n次分割图可得等式: +++…+=1﹣.
探究二:计算+++…+.
第1次分割,把正方形的面积三等分,其中阴影部分的面积为;
第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为+;
第3次分割,把上次分割图中空白部分的面积继续三等分,…;
第n次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为+++…+,最后空白部分的面积是.
根据第n次分割图可得等式: +++…+=1﹣,
两边同除以2,得+++…+=﹣.
探究三:计算+++…+.
(仿照上述方法,只画出第n次分割图,在图上标注阴影部分面积,并写出探究过程)
解决问题:计算+++…+.
(只需画出第n次分割图,在图上标注阴影部分面积,并完成以下填空)
根据第n次分割图可得等式:_________,
所以, +++…+=________.
拓广应用:计算 +++…+.
如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…,记△B1CB2的面积为S1,△B2C1B3的面积为S2,△B3C2B4的面积为S3,如此下去,则Sn=_____.
若A(2,0),B(0,4),C(2,4),D为坐标平面内一点,且△ABC与△ACD全等,则D点坐标为_________.
如图,AD平分∠BAC,DE⊥AB于点E,S△ACD=3,DE=2,则AC长是( )
A. 3 B. 4 C. 5 D. 6
随着信息技术的快速发展,“互联网+”渗透到我们日常生活的各个领域,网上在线学习交流已不再是梦,现有某教学网站策划了A、B两种上网学习的月收费方案:
A方案:月租7元,可上网25小时,若超时,超出部分按每分钟0.01元收费;
B方案:月租10元,可上网50小时,若超时,超出部分按每分钟0.01元收费;
设每月上网学习时间为小时.
(1)当>50时,用含有x的代数式分别表示A、B两种上网的费用;
(2)当x=100时,分别求出两种上网学习的费用.
(3)若上网40小时,选择哪种方式上网学习合算,为什么?
某次数学测验共20道选择题,规则是:选对一道得5分,选错一道得-1分,不选得零分,王明同学的卷面成绩是:选对16道题,选错2道题,有2道题未做,他的得分是 .
如图,A是半径为12cm的⊙O上的定点,动点P从A出发,以2πcm/s的速度沿圆周逆时针运动,当点P回到点A立即停止运动.
(1)如果∠POA=90°,求点P运动的时间;
(2)如果点B是OA延长线上的一点,AB=OA,那么当点P运动的时间为2s时,判断直线BP与⊙O的位置关系,并说明理由.
如图,点A的坐标为(-1,0),点B在直线上运动,当线段AB最短时,点B的坐标为( )
A. (0,0) B. (,) C. (,) D. (,)