ÌâÄ¿ÄÚÈÝ
Èçͼ£¬ÒÑÖªÅ×ÎïÏߣ¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÉèD¡¢EÊÇÏß¶ÎABÉÏÒìÓÚA¡¢BµÄÁ½¸ö¶¯µã£¨µãEÔÚµãDµÄÉÏ·½£©£¬DE=
£¨3£©µ±£¨2£©ÖеÄÏß¶ÎDEÔÚÒÆ¶¯¹ý³ÌÖУ¬ËıßÐÎDEGFÄÜ·ñ³ÉΪÁâÐΣ¿ÈôÄÜ£¬ÇëÇó³öÏàÓ¦xµÄÖµ£»Èô²»ÄÜ£¬Çë˵Ã÷ÀíÓÉ£®
¡¾´ð°¸¡¿·ÖÎö£º£¨1£©ÓÉÅ×ÎïÏߵĽâÎöʽ֪£ºµãCµÄ×Ý×ø±êΪ-2£¬¶øBC¡ÎxÖᣬÄÇôµãBµÄ×Ý×ø±êҲΪ-2£¬¸ù¾ÝÖ±ÏßABµÄ½âÎöʽ¼´¿ÉÈ·¶¨BµãµÄ×ø±ê£¬È»ºó½«Æä´úÈëÅ×ÎïÏߵĽâÎöʽÖУ¬¿ÉÇóµÃmµÄÖµ£¬´Ó¶øÈ·¶¨¸ÃÅ×ÎïÏߵĽâÎöʽ£®
£¨2£©¹ýD×÷DM¡ÍEGÓÚM£¬Ò×Öª¡ÏEDM=45°£¬ÄÇôDM=1£¬¿ÉÉè³öµãDµÄºá×ø±ê£¬½ø¶ø¸ù¾ÝDMµÄ³¤±íʾ³öEµãµÄºá×ø±ê£¬ÓÉÖ±ÏßABºÍÅ×ÎïÏߵĽâÎöʽ¿ÉÇóµÃD¡¢E¡¢F¡¢GµÄ×Ý×ø±ê£¬´Ó¶øµÃµ½DF¡¢ECµÄ³¤£¬ÓÉÓÚËıßÐÎECFDÊǸöÌÝÐΣ¬ÄÇô¸ù¾ÝÌÝÐεÄÃæ»ý¹«Ê½¼´¿ÉµÃµ½y¡¢xµÄº¯Êý¹ØÏµÊ½£®
£¨3£©ÈôËıßÐÎEGFDÊÇÁâÐΣ¬Ê×ÏÈÓ¦¸ÃÂú×ãËıßÐÎEGFDÊǸöƽÐÐËıßÐΣ¬ÄÇôEG=DF£¬¿É¸ù¾Ý£¨2£©ÌâµÃµ½µÄÁ½ÌõÏ߶εıí´ïʽ£¬Áз½³ÌÇó³öµãDF¡¢CEµÄ³¤£¬È»ºóÅжÏDFÊÇ·ñÓëDEÏàµÈ¼´¿É£®
½â´ð£º½â£º£¨1£©Ò×ÖªC£¨0£¬-2£©£¬ÔòBµãµÄ×Ý×ø±êҲΪ-2£»
ÓÉÓÚµãBÔÚÖ±Ïßy=xÉÏ£¬ÔòB£¨-2£¬-2£©£¬´úÈëÅ×ÎïÏߵĽâÎöʽÖУ¬¿ÉµÃ£º
×£¨-2£©2-2m-2=-2£¬
½âµÃm=1£»
¹Ê£º
£»
£¨2£©¹ýD×÷DM¡ÍEGÓÚM£»
¡÷DEMÖУ¬DE=
£¬¡ÏEDM=45°£¬ÔòDM=1£»
ÉèD£¨x£¬x£©£¬ÔòE£¨x+1£¬x+1£©£¬
F£¨x£¬
x2+x-2£©£¬G£¨x+1£¬
£¨x+1£©2+£¨x+1£©-2£©£»
¹ÊDF=x-£¨
x2+x-2£©=2-
x2£¬
EG=£¨x+1£©-[
£¨x+1£©2+£¨x+1£©-2]=2-
£¨x+1£©2£»
Ôòy=
£¨DF+EG£©×DM=
[2-
x2+2-
£¨x+1£©2]×1£¬
ÕûÀíµÃ£º
£¬
xµÄȡֵ·¶Î§ÊÇ-2£¼x£¼1£®
£¨3£©ËıßÐÎDEGF²»ÄܳÉΪÁâÐΣ¬ÀíÓÉÈçÏ£º
ÈôËıßÐÎDEGFÊÇÁâÐΣ¬ÔòËıßÐÎDEGF±ØÐëÊǸöƽÐÐËıßÐΣ¬µÃ£º
DF=EG£¬
¼´2-
x2=2-
£¨x+1£©2£»
½âµÃx=-
£¬
ÔòDF=EG=
¡ÙDE£»
¹ÊËıßÐÎDEGF²»¿ÉÄܳÉΪÁâÐΣ®
µãÆÀ£º´ËÌ⿼²éÁ˶þ´Îº¯Êý½âÎöʽµÄÈ·¶¨¡¢Í¼ÐÎÃæ»ýµÄÇ󷨡¢ÁâÐεÄÅж¨·½·¨µÈ֪ʶ£¬ÄѶÈÊÊÖУ®
£¨2£©¹ýD×÷DM¡ÍEGÓÚM£¬Ò×Öª¡ÏEDM=45°£¬ÄÇôDM=1£¬¿ÉÉè³öµãDµÄºá×ø±ê£¬½ø¶ø¸ù¾ÝDMµÄ³¤±íʾ³öEµãµÄºá×ø±ê£¬ÓÉÖ±ÏßABºÍÅ×ÎïÏߵĽâÎöʽ¿ÉÇóµÃD¡¢E¡¢F¡¢GµÄ×Ý×ø±ê£¬´Ó¶øµÃµ½DF¡¢ECµÄ³¤£¬ÓÉÓÚËıßÐÎECFDÊǸöÌÝÐΣ¬ÄÇô¸ù¾ÝÌÝÐεÄÃæ»ý¹«Ê½¼´¿ÉµÃµ½y¡¢xµÄº¯Êý¹ØÏµÊ½£®
£¨3£©ÈôËıßÐÎEGFDÊÇÁâÐΣ¬Ê×ÏÈÓ¦¸ÃÂú×ãËıßÐÎEGFDÊǸöƽÐÐËıßÐΣ¬ÄÇôEG=DF£¬¿É¸ù¾Ý£¨2£©ÌâµÃµ½µÄÁ½ÌõÏ߶εıí´ïʽ£¬Áз½³ÌÇó³öµãDF¡¢CEµÄ³¤£¬È»ºóÅжÏDFÊÇ·ñÓëDEÏàµÈ¼´¿É£®
½â´ð£º½â£º£¨1£©Ò×ÖªC£¨0£¬-2£©£¬ÔòBµãµÄ×Ý×ø±êҲΪ-2£»
ÓÉÓÚµãBÔÚÖ±Ïßy=xÉÏ£¬ÔòB£¨-2£¬-2£©£¬´úÈëÅ×ÎïÏߵĽâÎöʽÖУ¬¿ÉµÃ£º
½âµÃm=1£»
¹Ê£º
£¨2£©¹ýD×÷DM¡ÍEGÓÚM£»
¡÷DEMÖУ¬DE=
ÉèD£¨x£¬x£©£¬ÔòE£¨x+1£¬x+1£©£¬
F£¨x£¬
¹ÊDF=x-£¨
EG=£¨x+1£©-[
Ôòy=
ÕûÀíµÃ£º
xµÄȡֵ·¶Î§ÊÇ-2£¼x£¼1£®
£¨3£©ËıßÐÎDEGF²»ÄܳÉΪÁâÐΣ¬ÀíÓÉÈçÏ£º
ÈôËıßÐÎDEGFÊÇÁâÐΣ¬ÔòËıßÐÎDEGF±ØÐëÊǸöƽÐÐËıßÐΣ¬µÃ£º
DF=EG£¬
¼´2-
½âµÃx=-
ÔòDF=EG=
¹ÊËıßÐÎDEGF²»¿ÉÄܳÉΪÁâÐΣ®
µãÆÀ£º´ËÌ⿼²éÁ˶þ´Îº¯Êý½âÎöʽµÄÈ·¶¨¡¢Í¼ÐÎÃæ»ýµÄÇ󷨡¢ÁâÐεÄÅж¨·½·¨µÈ֪ʶ£¬ÄѶÈÊÊÖУ®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿