题目内容
【题目】如图1,AB、CD是圆O的两条弦,交点为P.连接AD、BC. OM⊥ AD,ON⊥BC,垂足分别为M、N.连接PM、PN.
图1 图2
(1)求证:△ADP ∽△CBP;
(2)当AB⊥CD时,探究PMO与PNO的数量关系,并说明理由;
(3)当AB⊥CD时,如图2,AD=8,BC=6, ∠MON=120°,求四边形PMON的面积.
【答案】(1)证明见解析;(2)PMO=PNO,理由见解析;(3)S平行四边形PMON=6
【解析】
(1)利用同弧所对的圆周角相等即可证明相似,(2)由OM⊥ AD,ON⊥BC得到M、N为AB、CD的中点,再由直角三角形斜边中线等于斜边一半即可解题,(3)由三角形中位线性质得∠QBC=90°,进而证明∠QCB=∠PBD,得到四边形MONP为平行四边形即可解题.
(1)因为同弧所对的圆周角相等,所以∠A=∠C, ∠D=∠B,所以△ADP∽△CBP.
(2)PMO=PNO
因为OM⊥ AD,ON⊥BC,
所以点M、N为AB、CD的中点,
又AB⊥CD,
所以PM=AD,PN=BC,
所以,∠A=∠APM,∠C=∠CPN,
所以∠AMP=∠CNP,得到PMO与PNO.
(3)连接CO并延长交圆O于点Q,连接BD.
因为AB⊥CD,AM=AD,CN=BC,
所以PM=AD,PN=BC.
由三角形中位线性质得,ON=.
因为CQ为圆O直径,所以∠QBC=90°,
则∠Q+∠QCB=90°,
由∠DPB=90°,得∠PDB+∠PBD=90°,而∠PDB=∠Q,
所以∠QCB=∠PBD,所以BQ=AD,
所以PM=ON.
同理可得,PN=OM.所以四边形MONP为平行四边形.
S平行四边形PMON=6
练习册系列答案
相关题目