题目内容

【题目】完成下面推理过程: 如图,已知DE∥BC,DF、BE分别平分∠ADE、∠ABC,可推得∠FDE=∠DEB的理由:
∵DE∥BC(已知)
∴∠ADE=
∵DF、BE分别平分∠ADE、∠ABC,
∴∠ADF=
∠ABE=
∴∠ADF=∠ABE

∴∠FDE=∠DEB.(

【答案】∠ABC;两直线平行,同位角相等;∠ADE;角平分线定义;∠ABC;角平分线定义;DF;BE;同位角相等,两直线平行;两直线平行,内错角相等
【解析】解:理由是:∵DE∥BC(已知), ∴∠ADE=∠ABC(两直线平行,同位角相等),
∵DF、BE分别平分ADE、∠ABC,
∴∠ADF= ∠ADE(角平分线定义),
∠ABE= ∠ABC(角平分线定义),
∴∠ADF=∠ABE,
∴DF∥BE(同位角相等,两直线平行),
∴∠FDE=∠DEB(两直线平行,内错角相等),
所以答案是:∠ABC,两直线平行,同位角相等;∠ADE,角平分线定义;∠ABC,角平分线定义;DF,BE,同位角相等,两直线平行;两直线平行,内错角相等.
【考点精析】掌握平行线的判定与性质是解答本题的根本,需要知道由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网