题目内容

【题目】如图,MN是⊙O的直径,QN是⊙O的切线,连接MQ交⊙O于点H,E为上一点,连接ME,NE,NE交MQ于点F,且ME2=EFEN.

(1)求证:QN=QF;
(2)若点E到弦MH的距离为1,cos∠Q=,求⊙O的半径.

【答案】
(1)

证明:如图1,

∵ME2=EFEN,

=

又∵∠MEF=∠MEN,

∴△MEF∽△MEN,

∴∠1=∠EMN.

∵∠1=∠2,∠3=∠EMN,

∴∠2=∠3,

∴QN=QF;


(2)

解:如图2,连接OE交MQ于点G,设⊙O的半径是r.

由(1)知,△MEF∽△MEN,则∠4=∠5.

=

∴OE⊥MQ,

∴EG=1.

∵cos∠Q=,且∠Q+∠GMO=90°,

∴sin∠GMO=

=,即=

解得,r=2.5,即⊙O的半径是2.5.


【解析】(1)如图1,通过相似三角形(△MEF∽△MEN)的对应角相等推知,∠1=∠EMN;又由弦切角定理、对顶角相等证得∠2=∠3;最后根据等角对等边证得结论;
(2)如图2,连接OE交MQ于点G,设⊙O的半径是r.根据(1)中的相似三角形的性质证得∠EMF=∠ENM,所以由“圆周角、弧、弦间的关系”推知点E是弧MH的中点,则OE⊥MQ;然后通过解直角△MNE求得cos∠Q=sin∠GMO== , 则可以求r的值.
【考点精析】本题主要考查了切线的性质定理和相似三角形的判定与性质的相关知识点,需要掌握切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网