题目内容
【题目】按一定规律排列的一列数:21,22,23,25,28,213,…,若x,y,z表示这列数中的连续三个数,则x、y、z满足的关系式是( )
A.x+y=z B.xy=z C.x+y>z D.xy>z
【答案】B
【解析】
试题分析:首项判断出这列数中,2的指数各项依次为 1,2,3,5,8,13,…,从第三个数起,每个数都是前两数之和;然后根据同底数的幂相乘,底数不变,指数相加,可得这列数中的连续三个数,满足xy=z,据此解答即可.
解:∵21×22=23,22×23=25,23×25=28,25×28=213,…,
∴x、y、z满足的关系式是:xy=z.
故选:B.
练习册系列答案
相关题目