题目内容

将抛物线C:y=x2+3x-10,将抛物线C平移到C′.若两条抛物线C,C′关于直线x=1对称,则下列平移方法中正确的是(  )
A、将抛物线C向右平移
5
2
个单位
B、将抛物线C向右平移3个单位
C、将抛物线C向右平移5个单位
D、将抛物线C向右平移6个单位
分析:主要是找一个点,经过平移后这个点与直线x=1对称.抛物线C与y轴的交点为A(0,-10),与A点以对称轴对称的点是B(-3,-10).若将抛物线C平移到C′,就是要将B点平移后以对称轴x=1与A点对称.则B点平移后坐标应为(2,-10).因此将抛物线C向右平移5个单位.
解答:解:∵抛物线C:y=x2+3x-10=(x+
3
2
)
2
-
49
4

∴抛物线对称轴为x=-
3
2

∴抛物线与y轴的交点为A(0,-10).
则与A点以对称轴对称的点是B(-3,-10).
若将抛物线C平移到C′,并且C,C′关于直线x=1对称,就是要将B点平移后以对称轴x=1与A点对称.
则B点平移后坐标应为(2,-10).
因此将抛物线C向右平移5个单位.
故选C.
点评:主要考查了函数图象的平移,抛物线与坐标轴的交点坐标的求法,要求熟练掌握平移的规律:左加右减,上加下减.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网