题目内容
【题目】将纸片△ABC沿DE折叠使点A落在点A’处.
(感知)如图①,点A’落在四边形BCDE的边BE上,则∠A与∠1之间的数量关系是 .
(探究)如图②,若A’点落在四边形BCDE的内部,则∠A与∠1+∠2之间存在怎样的数量关系?并说明理由?
(拓展)如图③,点A’落在四边形BCDE的外部,若∠1=80°,∠2=24°,则∠A的大小为 度.
【答案】感知:2∠A=∠1 ;探究:2∠A=∠1+∠2,理由详见解析;拓展:28.
【解析】
感知: 运用折叠原理及三角形的外角性质即可解决问题;
探究: 运用折叠原理及四边形的内角和定理即可解决问题;
拓展: 运用三角形的外角性质即可解决问题.
感知:2∠A=2∠1,
理由:如图①:
∵延DE折叠A和A′重合,
∴∠AED=∠A′ED,∠ADE=∠A′DE,
∵∠AED+∠ADE=180°-∠A,
∠1+∠2=180°+180°-2(∠AED+∠ADE),
∴∠1+∠2=360°-2(180°-∠A)=2∠A;
探究: 2∠A=∠1+∠2.
理由如下:如图②:
∵∠1+∠A′DA+∠2+∠A′EA=360°,
∠A+∠A′+∠A′DA+∠A′EA=360°,
∴∠A′+∠A=∠1+∠2,
由折叠知识可得:∠A=∠A′,
∴2∠A=∠1+∠2.
拓展:
如图③,
∵∠1=∠DFA+∠A,∠DFA=∠A′+∠2,
∴∠1=∠A+∠A′+∠2=2∠A+∠2,
∴2∠A=∠1-∠2=56°,
解得∠A=28°.
【题目】阅读可以增进人们的知识,也能陶冶人们的情操.我们要多阅读有营养的书.某校对学生的课外阅读时间进行了抽样调查,将收集的数据分成A,B,C,D,E五组进行整理,并绘制成如图所示的统计图表(图中信息不完整).
阅读时间分组统计表
组别 | 阅读时间x(h) | 人数 |
A | 0≤x<10 | a |
B | 10≤x<20 | 100 |
C | 20≤x<30 | b |
D | 30≤x<40 | 140 |
E | x≥40 | c |
请结合以上信息解答下列问题:
(1)求a,b,c的值;
(2)补全“阅读人数分组统计图”;
(3)估计全校课外阅读时间在20h以下(不含20h)的学生所占百分比.