题目内容
【题目】如图,已知抛物线与x交于A(﹣1,0)、E(3,0)两点,与y轴交于点B(0,3)
(1)求抛物线的解析式;
(2)设抛物线顶点为D,求四边形AEDB的面积.
【答案】
(1)
解:设抛物线的解析式为:y=a(x+1)(x﹣3),则有:
a(0+1)(0﹣3)=3,a=﹣1;
∴抛物线的解析式为:y=﹣x2+2x+3
(2)
解:由(1)知:y=﹣x2+2x+3=﹣(x﹣1)2+4,
即D(1,4);
过D作DF⊥x轴于F;
S四边形AEDB=S△AOB+S△DEF+S梯形BOFD= ×1×3+ ×2×4+ ×(3+4)×1=9;
即四边形AEDB的面积为9.
【解析】(1)已知了抛物线图象上的三点坐标,可用待定系数法求出抛物线的解析式;(2)根据抛物线的解析式,易求得抛物线顶点D的坐标;过D作DF⊥x轴于F,那么四边形AEDB的面积就可以由△AOB、△DEF、梯形BOFD的面积和求得.
练习册系列答案
相关题目
【题目】甲、乙两名队员参加射击训练,成绩分别绘制成下列两个统计图:
根据以上信息,整理分析数据如下:
平均成绩(环) | 中位数(环) | 众数(环) | 方差 | |
甲 | a | 7 | 7 | 1.2 |
乙 | 7 | b | 8 | c |
(1)写出表格中a,b,c的值;
(2)分别运用表中的四个统计量,简要分析这两名队员的射击成绩,若选派其中一名参赛,你认为应选哪名队员?