题目内容
有一个算式分子都是整数,满足![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103195418927431167/SYS201311031954189274311013_ST/0.png)
在我们的教科书中选取了一些具体值并将它们代入要解的一元二次方程中,大致估计出一元二次方程解的范围,再在这个范围内逐步加细赋值,进而逐步估计出一元二次方程的近似解.下面介绍另外一种估计一元二次方程近似解的方法,以方程x2-3x-1=0为例,因为x≠0,所以先将其变形为x=3+
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103195418927431167/SYS201311031954189274311013_ST/1.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103195418927431167/SYS201311031954189274311013_ST/2.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103195418927431167/SYS201311031954189274311013_ST/3.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103195418927431167/SYS201311031954189274311013_ST/4.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103195418927431167/SYS201311031954189274311013_ST/5.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103195418927431167/SYS201311031954189274311013_ST/6.png)
可以猜想,随着替代次数的不断增加,右式最后的
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103195418927431167/SYS201311031954189274311013_ST/7.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103195418927431167/SYS201311031954189274311013_ST/8.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103195418927431167/SYS201311031954189274311013_ST/9.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103195418927431167/SYS201311031954189274311013_ST/10.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103195418927431167/SYS201311031954189274311013_ST/11.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103195418927431167/SYS201311031954189274311013_ST/12.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103195418927431167/SYS201311031954189274311013_ST/13.png)
3,3+
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103195418927431167/SYS201311031954189274311013_ST/14.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103195418927431167/SYS201311031954189274311013_ST/15.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103195418927431167/SYS201311031954189274311013_ST/16.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103195418927431167/SYS201311031954189274311013_ST/17.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103195418927431167/SYS201311031954189274311013_ST/18.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103195418927431167/SYS201311031954189274311013_ST/19.png)
可以发现它们越来越趋于稳定,事实上,这些数越来越近似于方程x2-3x-1=0的正根,而且它的算法也很简单,就是以3为第一个近似值,然后不断地求倒数,再加3而已,在计算机技术极为发达的今天,只要编一个极为简单的程序,计算机就能很快帮你算出它的多个近似值.
【答案】分析:首先确定式子
的取值范围,再将不等式去分母,得出121.275<35•( )+21•( )+15•( )<122.22,利用除法运算的性质得出符合要求的值.
解答:解:由题意可知1.155<
<1.164.
∴121.275<35•( )+21•( )+15•( )<122.22.
由于( )的数都是整数,
∴35•( )+21•( )+15•( )=122,而122被3除余2,122被5除余2,122被7除余3,
故三个括号内由左到右依次填:1、2、3,即
=1.16.
点评:此题主要考查了怎样估计一元二次方程的近似值,通过阅读材料获取信息是近几年中考中热点问题,已注意细心阅读发现规律才能解决问题.
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103195418927431167/SYS201311031954189274311013_DA/0.png)
解答:解:由题意可知1.155<
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103195418927431167/SYS201311031954189274311013_DA/1.png)
∴121.275<35•( )+21•( )+15•( )<122.22.
由于( )的数都是整数,
∴35•( )+21•( )+15•( )=122,而122被3除余2,122被5除余2,122被7除余3,
故三个括号内由左到右依次填:1、2、3,即
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103195418927431167/SYS201311031954189274311013_DA/2.png)
点评:此题主要考查了怎样估计一元二次方程的近似值,通过阅读材料获取信息是近几年中考中热点问题,已注意细心阅读发现规律才能解决问题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目