题目内容
【题目】数学活动:擦出智慧的火花---------由特殊到一般的数学思想.
数学课上,李老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC上的点,过点E作EF⊥AE,过点F作FG⊥BC交BC的延长线于点G..
(1)求证:∠BAE=∠FEG.
(2)同学们很快做出了解答,之后李老师将题目修改成:如图2,四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的平分线于点F,求证:AE=EF.
经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF.请借助图1完成小明的证明;
在(2)的基础上,同学们作了进一步的研究:
(3)小聪提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小聪的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.
【解析】试题分析:(1)根据∠AEF=90°,即可得到∠AEB+∠FEG=90°,在直角△ABE中,利用三角形内角和定理得到∠BAE+∠AEB=90°,然后根据同角的余角相等,即可证得;
(2)作AB的中点M,连接ME,根据ASA即可证明△AME≌△ECF,然后根据全等三角形的对应边相等即可证得;
(3)在AB上取一点M,使AM=EC,连接ME,同(2)根据ASA即可证明△AME≌△ECF,然后根据全等三角形的对应边相等即可证得.
试题解析:解:(1)∵∠AEF=90°,∴∠AEB+∠FEG=90°.又∵直角△ABE中,∠BAE+∠AEB=90°,∴∠BAE=∠FEG;
(2)作AB的中点M,连接ME.
∵正方形ABCD中,AB=BC.又∵AM=MB=AB,BE=CE=BC,∴MB=BE,∴△MBE是等腰直角三角形,∴∠BME=45°,∴∠AME=135°.又∵∠ECF=180°﹣∠FCG=180°﹣45°=135°,∴∠AME=∠ECF.在△AME和△ECF中,∵∠BAE=∠FEC,AM=EC,∠AME=∠ECF,∴△AME≌△ECF,∴AE=EF;
(3)在AB上取一点M,使AM=EC,连接ME,∴BM=BE,∴∠BME=45°,∴∠AME=135°.∵CF是外角平分线,∴∠DCF=45°,∴∠ECF=135°,∴∠AME=∠ECF.
∵∠AEB+∠BAE=90°,∠AEB+∠CEF=90°,∴∠BAE=∠CEF.在△AME和△ECF中,∵∠BAE=∠FEC,AAM=EC,∠AME=∠ECF,∴△AME≌△ECF(ASA),∴AE=EF.
【题目】数学课上,某班同学用天平和一些物品(如图)探究了等式的基本性质.该班科技创新小组的同学提出问题:仅用一架天平和一个10克的砝码能否测量出乒乓球和一次性纸杯的质量?科技创新小组的同学找来足够多的乒乓球和某种一次性纸杯(假设每个乒乓球的质量相同,每个纸杯的质量也相同),经过多次试验得到以下记录:
记录 | 天平左边 | 天平右边 | 状态 |
记录一 | 6个乒乓球, 1个10克的砝码 | 14个一次性纸杯 | 平衡 |
记录二 | 8个乒乓球 | 7个一次性纸杯, 1个10克的砝码 | 平衡 |
请算一算,一个乒乓球的质量是多少克?一个这种一次性纸杯的质量是多少克?
解:(1)设一个乒乓球的质量是克,则一个这种一次性纸杯的质量是______克;(用含的代数式表示)
(2)列一元一次方程求一个乒乓球的质量,并求出一个这种一次性纸杯的质量.