题目内容

【题目】如图1,甲、乙两车分别从相距480km的A,B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,甲车到达C地后因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图2,结合图象信息解答下列问题:

(1)乙车的速度是千米/时,乙车行驶的时间t=小时;
(2)求甲车从C地按原路原速返回A地的过程中,甲车距它出发地的路程y与它出发的时间x的函数关系式;
(3)直接写出甲车出发多长时间两车相距8O千米.

【答案】
(1)80;6
(2)解:根据题意可知甲从出发到返回A地需5小时,

∵甲车到达C地后因立即按原路原速返回A地,

∴结合函数图象可知,当x= 时,y=300;当x=5时,y=0;

设甲车从C地按原路原速返回A地时,即

甲车距它出发地的路程y与它出发的时间x的函数关系式为:y=kx+b,

函数关系式得:

解得:

故甲车从C地按原路原速返回A地时,

甲车距它出发地的路程y与它出发的时间x的函数关系式为:y=﹣120x+600


(3)解:由题意可知甲车的速度为: (千米/时),

设甲车出发m小时两车相距8O千米,有以下两种情况:

①两车相向行驶时,有:120m+80(m+1)+80=480,

解得:m=

②两车同向行驶时,有:600﹣120m+80(m+1)﹣80=480,

解得:m=3;

∴甲车出发 两车相距8O千米


【解析】解:(1)∵乙车比甲车先出发1小时,由图象可知乙行驶了80千米,
∴乙车速度为:80千米/时,乙车行驶全程的时间t=480÷80=6(小时);
【考点精析】解答此题的关键在于理解确定一次函数的表达式的相关知识,掌握确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网