题目内容

【题目】如图,已知一次函数y1=(m﹣2)x+2与正比例函数y2=2x图象相交于点A(2,n),一次函数y1=(m﹣2)x+2与x轴交于点B.

(1)求m、n的值;
(2)求△ABO的面积;
(3)观察图象,直接写出当x满足时,y1>y2

【答案】
(1)解:把点A(2,n)代入y2=2x得n=2×2=4,则A点坐标为(2,4),

把A(2,4)代入y1=(m﹣2)x+2得,4=(m﹣2)×2+2

解得m=3


(2)解:∵m=3,

∴y1=x+2,

令y=0,则x=﹣2,

∴B(﹣2,0),

∵A(2,4),

∴△ABO的面积= ×2×4=4


(3)x<2
【解析】解:(3)由图象可知:当x<2时,y1>y2
所以答案是x<2.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网