题目内容
【题目】如图,已知一次函数y1=(m﹣2)x+2与正比例函数y2=2x图象相交于点A(2,n),一次函数y1=(m﹣2)x+2与x轴交于点B.
(1)求m、n的值;
(2)求△ABO的面积;
(3)观察图象,直接写出当x满足时,y1>y2 .
【答案】
(1)解:把点A(2,n)代入y2=2x得n=2×2=4,则A点坐标为(2,4),
把A(2,4)代入y1=(m﹣2)x+2得,4=(m﹣2)×2+2
解得m=3
(2)解:∵m=3,
∴y1=x+2,
令y=0,则x=﹣2,
∴B(﹣2,0),
∵A(2,4),
∴△ABO的面积= ×2×4=4
(3)x<2
【解析】解:(3)由图象可知:当x<2时,y1>y2 .
所以答案是x<2.
练习册系列答案
相关题目