题目内容
数轴上点A表示﹣1,点B表示2,则表示A、B两点间的距离是_____.
下列计算正确的是( ).
A. B.
C. D.
某种商品的进价为 300 元,售价为 550 元.后来由于该商品积压,商店准备打折销售, 但要保证利润率为 10%,则该商品可打_____折.
A、B、C 为数轴上三点,若点 C 到点 A 的距离是点 C 到点 B 的距离的 2倍,则称点 C 是(A,B)的奇异点,例如图 1 中,点 A 表示的数为﹣1,点B 表示的数为 2,表示 1 的点 C 到点 A 的距离为 2,到点 B 的距离为 1,则点C 是(A,B)的奇异点,但不是(B,A)的奇异点.
(1)在图 1 中,直接说出点 D 是(A,B)还是(B,C)的奇异点;
(2)如图 2,若数轴上 M、N 两点表示的数分别为﹣2 和 4,(M,N)的奇异点 K 在 M、N 两点之间,请求出 K 点表示的数;
(3)如图 3,A、B 在数轴上表示的数分别为﹣20 和 40,现有一点 P 从点 B 出发,向左运动.
①若点 P 到达点 A 停止,则当点 P 表示的数为多少时,P、A、B 中恰有一个点为其余两点的奇异点?
②若点 P 到达点 A 后继续向左运动,是否存在使得 P、A、B 中恰有一个点为其余两点的奇异点的情况?若存在,请直接写出此时 PB 的距离;若不存在,请说明理由.
计算:
(1)(﹣1)×1+(﹣1)×(﹣2);
(2)﹣32+(5﹣×42)÷(﹣1)
化简x+y﹣(x﹣y)的最后结果是( )
A. 2x+2y B. 2y C. 2x D. 0
某天一个巡警骑摩托车在一条南北大道上巡逻,他从岗亭出发,巡逻了一段时间停留在A处,规定以岗亭为原点,向北方向为正,这段时间行驶纪录如下(单位:千米):+10,-9,+7,-15,+6,-14,+4,-2
(1)A在岗亭哪个方向?距岗亭多远?
(2)若摩托车行驶10千米耗油0.5升,且最后返回岗亭,这时摩托车共耗油多少升?
化简-2a-(2a-1)的结果是( )
A. B. 1 C. -4a+1 D.
在平面直角坐标系中,已知△ABC为等腰直角三角形,CB=CA=5,点C(0,3),点B在x轴正半轴上,点A在第三象限,且在反比例函数y=的图象上,则k=( )
A. 3 B. 4 C. 6 D. 12