题目内容
解下列方程(1)解方程:x2+4x+2=0(2)解方程x2-2x-2=0
分析:先配方,写成(x+a)2=b的形式,然后利用数的开平方法解答.
解答:解:(1)配方得,(x+2)2=2,
开方得,x+2=±
,
解得x1=
-2,x2=-
-2;
(2)配方得,(x-1)2=3,
开方得,x-1=±
,
解得x1=
+1,x2=-
+1.
开方得,x+2=±
2 |
解得x1=
2 |
2 |
(2)配方得,(x-1)2=3,
开方得,x-1=±
3 |
解得x1=
3 |
3 |
点评:本题考查了一元二次方程的两种解法的综合运用,解这类问题要配方,把原方程化成x2=a(a≥0)的形式,利用直接开平方求解.
练习册系列答案
相关题目
探究发现:
解下列方程,将得到的解填入下面的表格中,观察表格中两个解的和与积,它们和原来的方程的系数有什么联系?
(1)x2-2x=0(2)x2+3x-4=0(3)x2-5x+6=0
方 程 | x1 | x2 | x1+x2 | x1•x2 |
(1) | ||||
(2) | ||||
(3) |
(2)一般的,对于关于x的方程x2+px+q=0的两根为x1、x2,则x1+x2=______,x1•x2______.
(3)运用以上发现,解决下面的问题:
①已知一元二次方程x2-2x-7=0的两个根为x1,x2,则x1+x2的值为______
A.-2 B.2 C.-7 D.7
②已知x1,x2是方程x2-x-3=0的两根,试求(1+x1)(1+x2)和x12+x22的值.
解下列方程,将得到的解填入下面的表格中,观察表格中两个解的和与积,它们和原来的方程的系数有什么联系?
(1)x2-2x=0(2)x2+3x-4=0(3)x2-5x+6=0
方 程 | x1 | x2 | x1+x2 | x1.x2 |
(1) | ______ | ______ | ______ | ______ |
(2) | ______ | ______ | ______ | ______ |
(3) | ______ | ______ | ______ | ______ |
一般的,对于关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根为x1、x2
则x1+x2=______,x1.x2=______.
(2)运用以上发现,解决下面的问题:
①已知一元二次方程x2-2x-7=0的两个根为x1,x2,则x1+x2的值为______
A.-2 B.2 C.-7 D.7
②已知x1,x2是方程x2-x-3=0的两根,利用上述结论,不解方程,求x12+x22的值.
探究发现:
解下列方程,将得到的解填入下面的表格中,观察表格中两个解的和与积,它们和原来的方程的系数有什么联系?
(1)x2-2x=0(2)x2+3x-4=0(3)x2-5x+6=0
(1)请用文字语言概括你的发现.
(2)一般的,对于关于x的方程x2+px+q=0的两根为x1、x2,则x1+x2=______,x1•x2______.
(3)运用以上发现,解决下面的问题:
①已知一元二次方程x2-2x-7=0的两个根为x1,x2,则x1+x2的值为______
A.-2 B.2 C.-7 D.7
②已知x1,x2是方程x2-x-3=0的两根,试求(1+x1)(1+x2)和x12+x22的值.
解下列方程,将得到的解填入下面的表格中,观察表格中两个解的和与积,它们和原来的方程的系数有什么联系?
(1)x2-2x=0(2)x2+3x-4=0(3)x2-5x+6=0
方 程 | x1 | x2 | x1+x2 | x1•x2 |
(1) | ||||
(2) | ||||
(3) |
(2)一般的,对于关于x的方程x2+px+q=0的两根为x1、x2,则x1+x2=______,x1•x2______.
(3)运用以上发现,解决下面的问题:
①已知一元二次方程x2-2x-7=0的两个根为x1,x2,则x1+x2的值为______
A.-2 B.2 C.-7 D.7
②已知x1,x2是方程x2-x-3=0的两根,试求(1+x1)(1+x2)和x12+x22的值.