题目内容
解下列方程,将得到的解填入下面的表格中,观察表格中两个解的和与积,它们和原来的方程的系数有什么联系?
(1)x2-2x=0(2)x2+3x-4=0(3)x2-5x+6=0
请同学们仔细观察方程的解,你会发现方程的解与方程中未知数的系数和常数项之间有一定的关系.
一般的,对于关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根为x1、x2
则x1+x2=
(2)运用以上发现,解决下面的问题:
①已知一元二次方程x2-2x-7=0的两个根为x1,x2,则x1+x2的值为
A.-2 B.2 C.-7 D.7
②已知x1,x2是方程x2-x-3=0的两根,利用上述结论,不解方程,求x12+x22的值.
(1)x2-2x=0(2)x2+3x-4=0(3)x2-5x+6=0
方 程 | x1 | x2 | x1+x2 | x1.x2 |
(1) | 0 0 |
2 2 |
2 2 |
0 0 |
(2) | -4 -4 |
1 1 |
-3 -3 |
-4 -4 |
(3) | 2 2 |
3 3 |
5 5 |
6 6 |
一般的,对于关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根为x1、x2
则x1+x2=
-p
-p
,x1.x2=q
q
.(2)运用以上发现,解决下面的问题:
①已知一元二次方程x2-2x-7=0的两个根为x1,x2,则x1+x2的值为
B
B
A.-2 B.2 C.-7 D.7
②已知x1,x2是方程x2-x-3=0的两根,利用上述结论,不解方程,求x12+x22的值.
分析:(1)对于方程x2-2x=0、x2+3x-4=0、x2-5x+6=0可运用因式分解法求出解,然后进行两根的和与积;根据表中的特点可得到x1+x2=p,x1•x2=q;
(2)根据根与系数的关系得到x1+x2=1,x1•x2=-3,然后变形x12+x22得到(x1+x2)2-2x1•x2,再利用整体思想进行计算.
(2)根据根与系数的关系得到x1+x2=1,x1•x2=-3,然后变形x12+x22得到(x1+x2)2-2x1•x2,再利用整体思想进行计算.
解答:解:表中答案为0、2、2、0;(2)-4、1、-3、-4;(3)2、3、5、6;
(1)-p,q;
(2)∵x1+x2=1,x1•x2=-3,
∴x12+x22=(x1+x2)2-2x1•x2=1-2×(-3)=7.
(1)-p,q;
(2)∵x1+x2=1,x1•x2=-3,
∴x12+x22=(x1+x2)2-2x1•x2=1-2×(-3)=7.
点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=-
,x1•x2=
.也考查了因式分解法解一元二次方程.
b |
a |
c |
a |
练习册系列答案
相关题目
(1)探索:解下列方程,将得到的两根x1,x2和x1+x2,x1•x2的值填入下面的表格.
(2)猜想:x1+x2,x1•x2的值与一元二次方程ax2+bx+c=0(a≠0)(x1,x2是其两个根)的各项系数a,b,c之间有何关系?
(3)利用一元二次方程的求根公式证明(2)中的猜想.
方程 | x1 | x2 | x1+x2 | x1•x2 |
x2+3x-4=0 | ||||
2x2+x-1=0 | ||||
3x2-5x+2=0 |
(3)利用一元二次方程的求根公式证明(2)中的猜想.
解下列方程,将得到的解填入下面的表格中,观察表格中两个解的和与积,它们和原来的方程的系数有什么联系?
(1)x2-2x=0(2)x2+3x-4=0(3)x2-5x+6=0
方 程 | x1 | x2 | x1+x2 | x1.x2 |
(1) | ______ | ______ | ______ | ______ |
(2) | ______ | ______ | ______ | ______ |
(3) | ______ | ______ | ______ | ______ |
一般的,对于关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根为x1、x2
则x1+x2=______,x1.x2=______.
(2)运用以上发现,解决下面的问题:
①已知一元二次方程x2-2x-7=0的两个根为x1,x2,则x1+x2的值为______
A.-2 B.2 C.-7 D.7
②已知x1,x2是方程x2-x-3=0的两根,利用上述结论,不解方程,求x12+x22的值.
探究发现:
解下列方程,将得到的解填入下面的表格中,观察表格中两个解的和与积,它们和原来的方程的系数有什么联系?
(1)x2-2x=0(2)x2+3x-4=0(3)x2-5x+6=0
(1)请用文字语言概括你的发现.
(2)一般的,对于关于x的方程x2+px+q=0的两根为x1、x2,则x1+x2=______,x1•x2______.
(3)运用以上发现,解决下面的问题:
①已知一元二次方程x2-2x-7=0的两个根为x1,x2,则x1+x2的值为______
A.-2 B.2 C.-7 D.7
②已知x1,x2是方程x2-x-3=0的两根,试求(1+x1)(1+x2)和x12+x22的值.
解下列方程,将得到的解填入下面的表格中,观察表格中两个解的和与积,它们和原来的方程的系数有什么联系?
(1)x2-2x=0(2)x2+3x-4=0(3)x2-5x+6=0
方 程 | x1 | x2 | x1+x2 | x1•x2 |
(1) | ||||
(2) | ||||
(3) |
(2)一般的,对于关于x的方程x2+px+q=0的两根为x1、x2,则x1+x2=______,x1•x2______.
(3)运用以上发现,解决下面的问题:
①已知一元二次方程x2-2x-7=0的两个根为x1,x2,则x1+x2的值为______
A.-2 B.2 C.-7 D.7
②已知x1,x2是方程x2-x-3=0的两根,试求(1+x1)(1+x2)和x12+x22的值.