题目内容

【题目】数学问题:如何计算平面直角坐标系中任意两点之间的距离?

探究问题:

为解决上面的问题,我们从最简单的问题进行研究.

探究一:在图1中,已知线段ABA(﹣20),B03),写出线段AO的长,BO的长,所以线段AB的长为多少;把RtAOB向右平移3个单位,再向上平移2个单位,得到RtCDE,写出RtCDE的顶点坐标CDE,此时线段CD的长为多少,DE的长为多少,所以线段CE的长为多少.

探究二:在图2中,已知线段AB的端点坐标为Aab),Bcd),求出图中AB的长(用含abcd的代数式表示,不必证明).

归纳总结:无论线段AB处于直角坐标系中的哪个位置,当其端点坐标为Ax1y1),Bx2y2)时线段AB的长为多少(用含x1y1x2y2的代数式表示,不必证明).

拓展与应用:

运用在图3中,一次函数y=﹣x+3与反比例函数y=的图象交点为AB,交点的坐标分别是A12),B21).

①求线段AB的长;

②若点Px轴上动点,求PA+PB的最小值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网