题目内容
如图,矩形ABCD中,AB=3,BC=5,过对角线交点O作OE⊥AC交AD于E,则AE的长是( ).
A.1.6 | B.2.5 | C.3 | D.3.4 |
D
连接EC,由矩形的性质可得AO=CO,
又因EO⊥AC,则由线段的垂直平分线的性质可得EC=AE,
设AE=x,则ED=AD-AE=5-x,在Rt△EDC中,根据勾股定理可得EC2=DE2+DC2,
即x2=(5-x)2+32,解得x=3.4.故选D.
又因EO⊥AC,则由线段的垂直平分线的性质可得EC=AE,
设AE=x,则ED=AD-AE=5-x,在Rt△EDC中,根据勾股定理可得EC2=DE2+DC2,
即x2=(5-x)2+32,解得x=3.4.故选D.
练习册系列答案
相关题目