题目内容

阅读下列材料并填空.
平面上有n个点(n≥2)且任意三个点不在同一条直线上,过其中的每两点画直线,一共能作出多少条不同的直线?
①分析:当仅有两个点时,可连成1条直线;当有3个点时,可连成3条直线;当有4个点时,可连成6条直线;当有5个点时,可连成10条直线…
②归纳:考察点的个数和可连成直线的条数Sn发现:如下表
点的个数 可作出直线条数
2 1=S2=
2×1
2
3 3=S3=
3×2
2
4 6=S4=
4×3
2
5 10=S5=
5×4
2
n Sn=
n(n-1)
2
③推理:平面上有n个点,两点确定一条直线.取第一个点A有n种取法,取第二个点B有(n-1)种取法,所以一共可连成n(n-1)条直线,但AB与BA是同一条直线,故应除以2;即Sn=
n(n-1)
2
④结论:Sn=
n(n-1)
2
试探究以下几个问题:平面上有n个点(n≥3),任意三个点不在同一条直线上,过任意三个点作三角形,一共能作出多少不同的三角形?
(1)分析:
当仅有3个点时,可作出
 
个三角形;
当仅有4个点时,可作出
 
个三角形;
当仅有5个点时,可作出
 
个三角形;

(2)归纳:考察点的个数n和可作出的三角形的个数Sn,发现:(填下表)
点的个数 可连成三角形个数
3
4
5
n
(3)推理:
(4)结论:
分析:由于平面上有n个点,过不在同一条直线上的三点可以确定一个三角形,取第一个点A有n种取法,取第二个点B有(n-1)种取法,取第三个点C有(n-2)种取法,所以一共可以作n(n-1)(n-2)个三角形,但△ABC、△ACB、△BAC、△BCA、△CAB、△CBA是同一个三角形,故应除以6,故可得答案.
解答:解:(1)当仅有3个点时,可作1个三角形;
当有4个点时,可作4个三角形;
当有5个点时,可作10个三角形.
(2)填表如下:
点的个数 可连成三角形个数
3 1=S3=
3×2×1
6
4 4=S4=
4×3×2
6
5 10=S5=
5×4×3
6
n Sn=
n(n-1)(n-2)
6
(3)推理:平面上有n个点,过不在同一条直线上的三个点可以确定一个三角形,取第一个点A有n种方法,取第二个点有B有(n-1)种取法,取第三个点C有(n-2)种取法,
所以一共可以作n(n-1)(n-2)个三角形,但△ABC、△ACB、△BAC、△BCA、△CAB、△CBA是同一个三角形,
故应除以6,
即Sn=
n(n-1)(n-2)
6


(4)结论:Sn=
n(n-1)(n-2)
6
点评:本题考查了规律型:图形的变化,是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网