题目内容

【题目】如图,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C为圆心,CB为半径的圆交AB于点D,则BD的长为

【答案】
【解析】解:如图,作CE⊥AB于E. ∵∠B=180°﹣∠A﹣∠ACB=180°﹣20°﹣130°=30°,
在RT△BCE中,∵∠CEB=90°,∠B=30°,BC=2,
∴CE= BC=1,BE= CE=
∵CE⊥BD,
∴DE=EB,
∴BD=2EB=2
故答案为2

如图,作CE⊥AB于E,在RT△BCE中利用30度性质即可求出BE,再根据垂径定理可以求出BD.本题考查垂径定理、三角形内角和定理等知识,解题的关键是根据垂径定理添加辅助线,记住直角三角形30度角性质,属于基础题,中考常考题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网