题目内容

【题目】如图,AB是⊙O的直径,E为弦AC的延长线上一点,DE与⊙O相切于点D,且DEAC,连结OD,若AB=10,AC=6,求DE的长.

【答案】4

【解析】连结BC,如图,BC与OD相交于点F,利用圆周角定理得到BC⊥AE,则BC∥DE,再利用切线的性质得到OD⊥DE,接着利用垂径定理得到CF=BC,接下来判定四边形CEDF是矩形得到DE=CF=BC,然后利用勾股定理计算出BC,从而得到CF和DE的长.

连结BC,如图,BC与OD相交于点F,

∵AB是⊙O的直径,

∴∠ACB=90°,

∴BC⊥AE,

又∵DE⊥AC,

∴BC∥DE,

∵DE是⊙O的切线,

∴OD⊥DE,

∴OD⊥BC,

∴CF=BC,

∵BC⊥AE,DE⊥AC,DE⊥AC,

∴四边形CEDF是矩形.

∴DE=CF=BC,

在Rt△ACB中,∠ACB=90°,

∴BC==8,

∴CF=4,

∴DE=4.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网