ÌâÄ¿ÄÚÈÝ
£¨2012•Ð¢¸ÐÄ£Ä⣩Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬Ö±Ïßy=-
x+3ÓëxÖá¡¢yÖá·Ö±ð½»ÓÚµãB¡¢C£»Å×ÎïÏßy=-x2+bx+c¾¹ýB¡¢CÁ½µã£¬²¢ÓëxÖá½»ÓÚÁíÒ»µãA£®
£¨1£©Çó¸ÃÅ×ÎïÏßËù¶ÔÓ¦µÄº¯Êý¹Øϵʽ£»
£¨2£©ÉèP£¨x£¬y£©ÊÇÔÚµÚÒ»ÏóÏÞÄÚ¸ÃÅ×ÎïÏßÉϵÄÒ»¸ö¶¯µã£¬¹ýµãP×÷Ö±Ïßl¡ÍxÖáÓÚµãM£¬½»Ö±ÏßBCÓÚµãN£®
¢ÙÊÔÎÊ£ºÏ߶ÎPNµÄ³¤¶ÈÊÇ·ñ´æÔÚ×î´óÖµ£¿Èô´æÔÚ£¬Çó³öËüµÄ×î´óÖµ¼°´ËʱxµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
¢Úµ±x=
£¨3£©Á¬½ÓPC£¬ÔÚ£¨2£©µÄÌõ¼þÏ£¬½â´ðÏÂÁÐÎÊÌ⣺
¢ÙÇëÓú¬xµÄʽ×Ó±íʾÏ߶ÎBNµÄ³¤¶È£ºBN=
¢ÚÈôPC¡ÍBC£¬ÊÔÇó³ö´ËʱµãMµÄ×ø±ê£®
3 |
4 |
£¨1£©Çó¸ÃÅ×ÎïÏßËù¶ÔÓ¦µÄº¯Êý¹Øϵʽ£»
£¨2£©ÉèP£¨x£¬y£©ÊÇÔÚµÚÒ»ÏóÏÞÄÚ¸ÃÅ×ÎïÏßÉϵÄÒ»¸ö¶¯µã£¬¹ýµãP×÷Ö±Ïßl¡ÍxÖáÓÚµãM£¬½»Ö±ÏßBCÓÚµãN£®
¢ÙÊÔÎÊ£ºÏ߶ÎPNµÄ³¤¶ÈÊÇ·ñ´æÔÚ×î´óÖµ£¿Èô´æÔÚ£¬Çó³öËüµÄ×î´óÖµ¼°´ËʱxµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
¢Úµ±x=
1»ò3
1»ò3
ʱ£¬P¡¢C¡¢O¡¢NËĵãÄÜΧ³ÉƽÐÐËıßÐΣ®£¨3£©Á¬½ÓPC£¬ÔÚ£¨2£©µÄÌõ¼þÏ£¬½â´ðÏÂÁÐÎÊÌ⣺
¢ÙÇëÓú¬xµÄʽ×Ó±íʾÏ߶ÎBNµÄ³¤¶È£ºBN=
5-
x
5 |
4 |
5-
x
£»5 |
4 |
¢ÚÈôPC¡ÍBC£¬ÊÔÇó³ö´ËʱµãMµÄ×ø±ê£®
·ÖÎö£º£¨1£©ÀûÓÃÒ»´Îº¯ÊýÇó³öµãB¡¢CµÄ×ø±ê£¬È»ºóÀûÓôý¶¨ÏµÊý·¢Çó½â¶þ´Îº¯Êý½âÎöʽ¼´¿É£»
£¨2£©¢Ù¸ù¾Ý¶þ´Îº¯Êý½âÎöʽÉè³öµãPµÄ×ø±ê£¬¸ù¾ÝÖ±ÏßBC½âÎöʽÉè³öµãNµÄ×ø±ê£¬È»ºó¸ù¾ÝPN=PM-NM£¬¿ÉµÃ³öPNµÄ±í´ïʽ£¬ÀûÓÃÅä·½·¨¿ÉÇó³ö×î´óÖµ£®
¢Ú¸ù¾ÝPN¡ÎOC£¬¿ÉµÃ³öҪʹPCONΧ³ÉƽÐÐËıßÐΣ¬ÔòPN=CO£¬½áºÏ¢ÙPNµÄ±í´ïʽ¿É½¨Á¢·½³Ì£¬½â³ö¼´¿ÉµÃ³ö´ð°¸£®
£¨3£©¢Ù¸ù¾Ý¡÷BNM¡×¡÷BCO£¬ÀûÓÃÏàËÆÈý½ÇÐεĶÔÓ¦±ß³É±ÈÀý¿ÉµÃ³öBNµÄ¹ØÓÚxµÄ±í´ïʽ£»
¢ÚÏÈÅжϳö¡÷PCN¡×¡÷BOC£¬È»ºóÀûÓÃÀûÓöÔÓ¦±ß³É±ÈÀý¿ÉµÃ³ö·½³Ì£¬½â³ö¼´¿ÉµÃ³öxµÄÖµ£¬Ò²¿ÉÈ·¶¨µãMµÄ×ø±ê£®
£¨2£©¢Ù¸ù¾Ý¶þ´Îº¯Êý½âÎöʽÉè³öµãPµÄ×ø±ê£¬¸ù¾ÝÖ±ÏßBC½âÎöʽÉè³öµãNµÄ×ø±ê£¬È»ºó¸ù¾ÝPN=PM-NM£¬¿ÉµÃ³öPNµÄ±í´ïʽ£¬ÀûÓÃÅä·½·¨¿ÉÇó³ö×î´óÖµ£®
¢Ú¸ù¾ÝPN¡ÎOC£¬¿ÉµÃ³öҪʹPCONΧ³ÉƽÐÐËıßÐΣ¬ÔòPN=CO£¬½áºÏ¢ÙPNµÄ±í´ïʽ¿É½¨Á¢·½³Ì£¬½â³ö¼´¿ÉµÃ³ö´ð°¸£®
£¨3£©¢Ù¸ù¾Ý¡÷BNM¡×¡÷BCO£¬ÀûÓÃÏàËÆÈý½ÇÐεĶÔÓ¦±ß³É±ÈÀý¿ÉµÃ³öBNµÄ¹ØÓÚxµÄ±í´ïʽ£»
¢ÚÏÈÅжϳö¡÷PCN¡×¡÷BOC£¬È»ºóÀûÓÃÀûÓöÔÓ¦±ß³É±ÈÀý¿ÉµÃ³ö·½³Ì£¬½â³ö¼´¿ÉµÃ³öxµÄÖµ£¬Ò²¿ÉÈ·¶¨µãMµÄ×ø±ê£®
½â´ð£º½â£º£¨1£©ÓÉÓÚÖ±Ïßy=-
x+3¾¹ýB¡¢CÁ½µã£¬Áîy=0µÃx=4£»Áîx=0£¬µÃy=3£¬
¹Ê¿ÉµÃ£ºB£¨4£¬0£©£¬C£¨0£¬3£©£¬
¡ßµãB¡¢CÔÚÅ×ÎïÏßy=-x2+bx+cÉÏ£¬ÓÚÊǵÃ
£¬
½âµÃ£ºb=
£¬c=3£¬
¡àËùÇóº¯Êý¹ØϵʽΪy=-x2+
x+3£®
£¨2£©¢Ù¡ßµãP£¨x£¬y£©ÔÚÅ×ÎïÏßy=-x2+
x+3ÉÏ£¬ÇÒPN¡ÍxÖᣬ
¡àÉèµãPµÄ×ø±êΪ£¨x£¬-x2+
x+3£©Í¬Àí¿ÉÉèµãNµÄ×ø±êΪ£¨x£¬-
x+3£©£¬
ÓÖ¡ßµãPÔÚµÚÒ»ÏóÏÞ£¬
¡àPN=PM-NM=£¨-x2+
x+3£©-£¨-
x+3£©=-x2+4x=-£¨x-2£©2+4£¬
¡àµ±x=2ʱ£¬
Ï߶ÎPNµÄ³¤¶ÈµÄ×î´óֵΪ4£®
¢ÚÒòΪPN¡ÎCO£¬ÒªÊ¹PCONΧ³ÉƽÐÐËıßÐΣ¬ÔòPN=CO£¬
ÓɢٵãºPN=-x2+4x£¬¹Ê¿ÉµÃ£º-x2+4x=3£¬
½âµÃ£ºx=1»ò3£®
£¨3£©¢Ù¡ß¡÷BNM¡×¡÷BCO£¬
¡à
=
£¬¼´
=
£¬
½âµÃ£ºBN=5-
x£®
¢ÚÓÉPC¡ÍBCµÃ¡ÏPCN=¡ÏCOB=90¡ã£¬
ÓÖ¡ß¡ÏPNC=¡ÏOCB£¨ÓÉPN¡ÎOCµÃ³ö£©£¬
¡à¡÷PCN¡×¡÷BOC£¬
¡à
=
£¬¼´
=
£¬
½âµÃ£ºx=
»òx=0£¨ÉáÈ¥£©£¬
¹Ê´ËʱµãMµÄ×ø±êΪ£¨
£¬0£©£®
3 |
4 |
¹Ê¿ÉµÃ£ºB£¨4£¬0£©£¬C£¨0£¬3£©£¬
¡ßµãB¡¢CÔÚÅ×ÎïÏßy=-x2+bx+cÉÏ£¬ÓÚÊǵÃ
|
½âµÃ£ºb=
13 |
4 |
¡àËùÇóº¯Êý¹ØϵʽΪy=-x2+
13 |
4 |
£¨2£©¢Ù¡ßµãP£¨x£¬y£©ÔÚÅ×ÎïÏßy=-x2+
13 |
4 |
¡àÉèµãPµÄ×ø±êΪ£¨x£¬-x2+
13 |
4 |
3 |
4 |
ÓÖ¡ßµãPÔÚµÚÒ»ÏóÏÞ£¬
¡àPN=PM-NM=£¨-x2+
13 |
4 |
3 |
4 |
¡àµ±x=2ʱ£¬
Ï߶ÎPNµÄ³¤¶ÈµÄ×î´óֵΪ4£®
¢ÚÒòΪPN¡ÎCO£¬ÒªÊ¹PCONΧ³ÉƽÐÐËıßÐΣ¬ÔòPN=CO£¬
ÓɢٵãºPN=-x2+4x£¬¹Ê¿ÉµÃ£º-x2+4x=3£¬
½âµÃ£ºx=1»ò3£®
£¨3£©¢Ù¡ß¡÷BNM¡×¡÷BCO£¬
¡à
MN |
OC |
BN |
BC |
-
| ||
3 |
BN |
5 |
½âµÃ£ºBN=5-
5 |
4 |
¢ÚÓÉPC¡ÍBCµÃ¡ÏPCN=¡ÏCOB=90¡ã£¬
ÓÖ¡ß¡ÏPNC=¡ÏOCB£¨ÓÉPN¡ÎOCµÃ³ö£©£¬
¡à¡÷PCN¡×¡÷BOC£¬
¡à
PN |
BC |
CN |
OC |
-x2+4x |
5 |
| ||
3 |
½âµÃ£ºx=
23 |
12 |
¹Ê´ËʱµãMµÄ×ø±êΪ£¨
23 |
12 |
µãÆÀ£º´ËÌâÊôÓÚ¶þ´Îº¯ÊýµÄ×ÛºÏÌâÄ¿£¬Éæ¼°ÁËÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ¡¢Æ½ÐÐËıßÐεÄÐÔÖÊ£¬½â´ð±¾ÌâÐèÒªÎÒÃÇÊìÁ·¸÷¸ö֪ʶµãµÄÄÚÈÝ£¬ÈÏÕæ̽¾¿ÌâÄ¿£¬½÷É÷×÷´ð£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿