题目内容
【题目】如图,已知A(-4,n)、B(3,4)是一次函数y1=kx+b的图象与反比例函数的图象的两个交点,过点D(t,0)(0<t<3)作x轴的垂线,分别交双曲线和直线y1=kx+b于P、Q两点
(1) 直接写出反比例函数和一次函数的解析式
(2) 当t为何值时,S△BPQ=S△APQ
(3) 以PQ为边在直线PQ的右侧作正方形PQMN,试说明:边QM与双曲线(x>0)始终有交点
【答案】(1);(2);(3)见解析
【解析】试题分析:(1)根据点B的坐标求得反比例函数解析式,再根据反比例函数求得点A的坐标,最后根据待定系数法求得一次函数解析式即可;
(2)△APQ与△BPQ有一条公共边,根据同底的三角形的面积之比等于高之比,列出关于t的方程进行求解;
(3)设直线QM与双曲线交于C点,根据点P、Q、C三点的坐标,用t的代数式表示出QM-QC,再根据t的取值范围判断代数式的值的符号即可.
试题解析:
(1)将B(3,4)代入,得m=3×4=12,
∴反比例函数解析式为,
将A(﹣4,n)代入反比例函数,得n=﹣3,
∴A(﹣4,﹣3)
∵直线y1=kx+b过点A和点B,
∴,解得,
∴一次函数的解析式为y=x+1;
(2)如图1,∵PQ⊥x轴,
∴以PQ为底边时,△APQ与△BPQ的面积之比等于PQ边上的高之比,
又∵,
∴,
∵点D(t,0),A(﹣4,﹣3),B(3,4),
∴,即,
解得;
(3)如图2,设直线QM与双曲线交于C点.
依题意可知:P(t,),Q(t,t+1),C(,t+1),
∴QM=PQ=,QC=,
∴QM﹣QC==,
∵0<t<3,
∴0<t(t+1)<12,
∴>1,
即QM﹣QC>0,
∴QM>QC,
即边QM与双曲线始终有交点.
练习册系列答案
相关题目