题目内容
【题目】如图,在平面直角坐标系中,已知A(2,0),以OA为一边在第四象限内画正方形OABC,D(m,0)为x轴上的一个动点(m>2),以BD为一直角边在第四象限内画等腰直角△BDE,其中∠DBE=90°.
(1)试判断线段AE、CD的数量关系,并说明理由;
(2)设DE的中点为F,直线AF交y轴于点G.问:随着点D的运动,点G的位置是否会发生变化?若保持不变,请求出点G的坐标;若发生变化,请说明理由.
【答案】(1)AE=CD,理由详见解析;(2)点G的位置不会发生变化,理由详见解析.
【解析】
(1)由正方形OABC,可得BC=BA,∠ABC=90°,由等腰直角三角形BDE,可得BD=BE,∠DBE=90°,再根据∠CBD=∠ABE,即可得到△CBD≌△ABE,进而得出CD=AE;
(2)过点E作PQ∥OD,分别交直线AB,AF于点P,Q,判定△ADB≌△PBE,可得AD=PB,AB=PE,判定△ADF≌△QEF,可得AD=QE,依据AP=QP,可得∠AQP=45°,依据PQ∥OD,可得∠OAG=∠Q=45°,进而得到△AOG是等腰直角三角形,进而得到G(0,2),即点G的位置不会发生变化.
(1)AE=CD.
理由:由正方形OABC,可得BC=BA,∠ABC=90°,
由等腰直角三角形BDE,可得BD=BE,∠DBE=90°,
∴∠ABC+∠ABD=∠DBE+∠ABD,
即∠CBD=∠ABE,
∴△CBD≌△ABE,
∴CD=AE;
(2)点G的位置不会发生变化.
理由:如图,过点E作PQ∥OD,分别交直线AB,AF于点P,Q,
∵∠DAB=∠P=∠DBE=90°,
∴∠ADB+∠ABD=∠PBE+∠ABD=90°,
∴∠ADB=∠PBE,
又∵DB=BE,
∴△ADB≌△PBE,
∴AD=PB,AB=PE,
∵F是DE的中点,
∴DF=EF,
∵AD∥EQ,
∴∠DAF=∠Q,
又∵∠AFD=∠QFE,
∴△ADF≌△QEF,
∴AD=QE,
∴AB+BP=PE+EQ,即AP=QP,
∴∠AQP=45°,
又∵PQ∥OD,
∴∠OAG=∠Q=45°,
∴△AOG是等腰直角三角形,
∴GO=AO=2,
∴G(0,2),即点G的位置不会发生变化.
【题目】阅读下列材料:
根据联合国《人口老龄化及其社会经济后果》中提到的标准,当一个国家或地区65 岁及以上老年人口数量占总人口比例超过7%时,意味着这个国家或地区进入老龄化.从经济角度,一般可用“老年人口抚养比”来反映人口老龄化社会的后果.所谓“老年人口抚养比”是指某范围人口中,老年人口数(65 岁及以上人口数)与劳动年龄人口数(15﹣64 岁人口数)之比,通常用百分比表示,用以表明每100 名劳动年龄人口要负担多少名老年人.
以下是根据我国近几年的人口相关数据制作的统计图和统计表.
2011﹣2014 年全国人口年龄分布图
2011﹣2014 年全国人口年龄分布表
2011年 | 2012年 | 2013年 | 2014年 | |
0﹣14岁人口占总人口的百分比 | 16.4% | 16.5% | 16.4% | 16.5% |
15﹣64岁人口占总人口的百分比 | 74.5% | 74.1% | 73.9% | 73.5% |
65岁及以上人口占总人口的百分比 | m | 9.4% | 9.7% | 10.0% |
根据以上材料解答下列问题:
(1)2011 年末,我国总人口约为亿,全国人口年龄分布表中m的值为;
(2)若按目前我国的人口自然增长率推测,到2027 年末我国约有14.60 亿人.假设0﹣14岁人口占总人口的百分比一直稳定在16.5%,15﹣64岁人口一直稳定在10 亿,那么2027 年末我国0﹣14岁人口约为亿,“老年人口抚养比”约为;(精确到1%)
(3)2016 年1 月1 日起我国开始实施“全面二胎”政策,一对夫妻可生育两个孩子,在未来10年内,假设出生率显著提高,这(填“会”或“不会”)对我国的“老年人口抚养比”产生影响.