题目内容

已知关于x的方程 

(1)求证:不论k取什么实数值,这个方程总有实数根;(4分)

(2)若等腰三角形ABC的一边长,另两边的长b,c恰好是这个方程的两根,求△ABC的周长。(8分)

 

【答案】

(1)⊿=·····2分

∵论k取什么实数值,≥0,·∴原方程总有实数根.

(2)∵三角形ABC是等腰三角形ABC,

∴有两条边相等。

若b=c,

∵b、c都是方程的根,

∴⊿==0,

∴b+c=2k+1=3+1=4.

∵a=4,这时b+c=a,不合题意;

∴不存在这种情况。·若b、c中有一条与a相等,不妨设b=a=4.

∵b是所给的方程的根,

,∴ , b+c=2k+1=6,c=2.

∵a+b=8>c,

∴三角形ABC的周长为a+b+c=8+2=10.

【解析】(1)先把方程化为一般式:x2-(2k+1)x+4k-2=0,要证明无论k取任何实数,方程总有两个实数根,即要证明△≥0;

(2)先利用因式分解法求出两根:x1=2,x2=2k-1.先分类讨论:若a=4为底边;若a=4为腰,分别确定b,c的值,求出三角形的周长.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网