题目内容
【题目】如图,在平面直角坐标系中,已知抛物线与轴交于,两点,与轴交于点,连接.
(1)求抛物线的解析式;
(2)点在抛物线的对称轴上,当的周长最小时,点的坐标为_____________;
(3)点是第四象限内抛物线上的动点,连接和.求面积的最大值及此时点的坐标;
(4)若点是对称轴上的动点,在抛物线上是否存在点,使以点、、、为顶点的四边形是平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由.
【答案】(1);(2);(3)面积最大为,点坐标为;(4)存在点,使以点、、、为顶点的四边形是平行四边形,,点坐标为,,.
【解析】
(1)将点,代入即可求解;
(2)BC与对称轴的交点即为符合条件的点,据此可解;
(3)过点作轴于点,交直线与点,当EF最大时面积的取得最大值,据此可解;
(4)根据平行四边形对边平行且相等的性质可以得到存在点N使得以B,C,M,N为顶点的四边形是平行四边形.分三种情况讨论.
解:(1) 抛物线过点,
解得:
抛物线解析式为.
(2) 点,
∴抛物线对称轴为直线
点在直线上,点,关于直线对称
,
当点、、在同一直线上时,最小.
抛物线解析式为,
∴C(0,-6),
设直线解析式为
,
解得:
直线:
,
,
故答案为:.
(3)过点作轴于点,交直线与点,
设,则
,
当时,面积最大为
,
此时点坐标为.
(4)存在点,使以点、、、为顶点的四边形是平行四边形.
设N(x,y),M(,m),
①四边形CMNB是平行四边形时,CM∥NB,CB∥MN,
,
∴x= ,
∴y= = ,
∴N(,);
②四边形CNBM是平行四边形时,CN∥BM,CM∥BN,
,
∴x=,
∴y==
∴N(,);
③四边形CNMB是平行四边形时,CB∥MN,NC∥BM,
,
∴x=,
∴y==
∴N(,);
点坐标为(,),(,),(,).
【题目】小明根据学习函数的经验,对函数y=+1的图象与性质进行了探究.下面是小明的探究过程,请补充完整:
(1)函数y=+1的自变量x的取值范围是 ;
(2)下表列出了y与x的几组对应值,请写出m,n的值:m= ,n= ;
x | … | ﹣ | ﹣1 | ﹣ | 0 | 2 | 3 | … | ||||
y | … | m | 0 | ﹣1 | n | 2 | … |
(3)在如图所示的平面直角坐标系中,描全上表中以各对对应值为坐标的点,并画出该函数的图象.
(4)结合函数的图象,解决问题:
①写出该函数的一条性质:
②当函数值+1>时,x的取值范围是:
③方程+1=x的解为: