题目内容
【题目】如图,四边形ABCD 内接于⊙O,BD是⊙O的直径,过点A作AE⊥CD,交CD的延长线于点E,DA平分∠BDE.
(1)求证:AE是⊙O的切线;
(2)已知AE=4cm,CD=6cm,求⊙O的半径.
【答案】(1)证明见解析
【解析】
试题分析:(1)连接OA,因为点A在⊙O上,所以只要证明OA⊥AE即可;由同圆的半径相等得:OA=OD,则∠ODA=∠OAD,根据角平分线可知:∠OAD=∠EDA,所以EC∥OA,由此得OA⊥AE,则AE是⊙O的切线;
(2)过点O作OF⊥CD,垂足为点F,证明四边形AOFE是矩形,得OF=AE=4cm,由垂径定理得:DF=3,根据勾股定理求半径OD的长.
试题解析:(1)连结OA,∵OA=OD,∴∠ODA=∠OAD,∵DA平分∠BDE,
∴∠ODA=∠EDA,∴∠OAD=∠EDA,∴EC∥OA,
∵AE⊥CD,∴OA⊥AE,
∵点A在⊙O上,
∴AE是⊙O的切线;
(2)过点O作OF⊥CD,垂足为点F,∵∠OAE=∠AED=∠OFD=90°,∴四边形AOFE是矩形,∴OF=AE=4cm,
又∵OF⊥CD,∴DF=CD=3cm,在Rt△ODF中,OD==5cm,
即⊙O的半径为5cm.
练习册系列答案
相关题目