题目内容
【题目】如图1,点E为矩形ABCD边AD上一点,点P,点Q同时从点B出发,点P沿BE→ED→DC运动到点C停止,点Q沿BC运动到点C停止,它们的运动速度都是1cm/s,设P、Q出发t秒时,△BPQ的面积为y(cm2),已知y与t的函数关系的图象如图2(曲线OM为抛物线的一部分),则下列结论:
①AD=BE=5cm;②当0<t≤5时,y= t2;③直线NH的解析式为y=﹣ t+27;④若△ABE与△QBP相似,则t= 秒,
其中正确结论的个数为( )
A.4
B.3
C.2
D.1
【答案】B
【解析】解:①根据图(2)可得,当点P到达点E时点Q到达点C,
∵点P、Q的运动的速度都是1cm/s,
∴BC=BE=5cm,
∴AD=BE=5(故①正确);②如图1,过点P作PF⊥BC于点F,
根据面积不变时△BPQ的面积为10,可得AB=4,
∵AD∥BC,
∴∠AEB=∠PBF,
∴sin∠PBF=sin∠AEB= = ,
∴PF=PBsin∠PBF= t,
∴当0<t≤5时,y= BQPF= t t= t2(故②正确);③根据5﹣7秒面积不变,可得ED=2,
当点P运动到点C时,面积变为0,此时点P走过的路程为BE+ED+DC=11,
故点H的坐标为(11,0),
设直线NH的解析式为y=kx+b,
将点H(11,0),点N(7,10)代入可得: ,
解得: .
故直线NH的解析式为:y=﹣ t+ ,(故③错误);④当△ABE与△QBP相似时,点P在DC上,如图2所示:
∵tan∠PBQ=tan∠ABE= ,
∴ = ,即 = ,
解得:t= .(故④正确);
综上可得①②④正确,共3个.
所以答案是:B.
【考点精析】根据题目的已知条件,利用函数的图象的相关知识可以得到问题的答案,需要掌握函数的图像是由直角坐标系中的一系列点组成;图像上每一点坐标(x,y)代表了函数的一对对应值,他的横坐标x表示自变量的某个值,纵坐标y表示与它对应的函数值.