题目内容

如图,△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论:(1)BD平分∠ABC;(2)AD=BD=BC;(3)△BDC的周长等于AB+BC;(4)D是AC的中点.其中正确结论的个数有(  )
分析:由△ABC中,AB=AC,∠A=36°,可求得∠ABC与∠C的度数,又由AB的垂直平分线DE交AC于D,交AB于E,根据线段垂直平分线的性质,可证得AD=BD,继而可求得∠ABD,∠DBC的度数,则可得BD平分∠ABC;又可求得∠BDC的度数,则可证得AD=BD=BC;可求得△BDC的周长等于AB+BC.
解答:解:∵△ABC中,AB=AC,∠A=36°,
∴∠ABC=∠C=
180°-∠A
2
=72°,
∵AB的垂直平分线DE交AC于D,交AB于E,
∴AD=BD,
∴∠ABD=∠A=36°,
∵∠DBC=∠ABC-∠ABD=36°=∠ABD,
∴BD平分∠ABC;
故(1)正确;
∴∠BDC=180°-∠DBC-∠C=72°,
∴∠BDC=∠C,
∴BD=BC=AD,
故(2)正确;
△BDC的周长等于BD+DC+BC=AD+DC+BC=AC+BC=AB+BC;
故(3)正确;
∵AD=BD>CD,
∴D不是AC的中点,
故(4)错误.
故选B.
点评:此题考查了线段垂直平分线的性质与等腰三角形的判定与性质.此题难度适中,注意掌握转化思想与数形结合思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网