题目内容
【题目】在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.
(1)当直线MN绕点C旋转到图1的位置时,求证:DE=AD+BE;
(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD-BE;
(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请直接写出这个等量关系.
【答案】(1)证明见解析;(2)证明见解析;(3)DE=BE-AD.
【解析】试题分析:(1)由已知推出∠ADC=∠BEC=90°,因为∠ACD+∠BCE=90°,∠BCE+∠CBE=90°,推出∠ACD=∠CBE,根据AAS可得Rt△ADC≌Rt△CEB,得到AD=CE,CD=BE,即可求出答案;
(2)与(1)证法类似可证出∠ACD=∠CBE,能推出△ADC≌△CEB,得到AD=CE,CD=BE,根据线段的和差即可得到答案;
(3)同前两问可得△ACD≌△CBE,得到AD=CE,CD=BE,根据线段的和差即可得出结论.
试题解析:
证明:(1)∵∠ACB=90°,
∴∠ACD+∠BCE=90°,
而AD⊥MN于D,BE⊥MN于E,
∴∠ADC=∠CEB=90°,
∴∠BCE+∠CBE=90°,
∴∠ACD=∠CBE,
在△ADC与△CEB中,
∠ADC=∠CEB,∠ACD=∠CBE,AC=CB,
∴Rt△ADC≌Rt△CEB (AAS),
∴AD=CE,DC=BE,
∴DE=DC+CE=BE+AD;
(2)∵∠ACB=∠CEB=90°,
∴∠ACD+∠ECB=∠CBE+∠ECB=90°,
∴∠ACD=∠CBE
在△ADC与△CEB中,
∠ADC=∠CEB=90°,∠ACD=∠CBE,AC=CB,
∴△ADC≌△CEB (AAS),
∴AD=CE,DC=BE,
∴DE=CE-CD=AD-BE;
(3)DE=BE-AD.
理由:同(1)(2)证法可得△ADC≌△CEB ,
∴AD=CE,DC=BE,
∴DE=CD-CE=BE-AD.