题目内容

【题目】已知:如图1,点依次在直线上,现将射线绕点沿顺时针方向以每秒的速度旋转,同时射线绕点沿逆时针方向以每秒的速度旋转,如图,设旋转时间为秒).

1)用含的代数式表示的度数.

2)在运动过程中,当第二次达到时,求的值.

3)在旋转过程中是否存在这样的,使得射线是由射线、射线、射线中的其中两条组成的角(指大于而不超过的角)的平分线?如果存在,请直接写出的值;如果不存在,请说明理由.

【答案】1)∠MOA=2t;(240秒;(3t的值分别为1822.53667.5.

【解析】

1)∠AOM的度数等于OA旋转速度乘以旋转时间;

2)当∠AOB第二次达到60°时,射线OBOA的左侧,根据∠AOM+BON-MON=60°列方程求解可得;

3)射线OB是由射线OM、射线OA、射线ON中的其中两条组成的角的平分线有三种情况:

OB平分∠AOM时,根据AOM=BOM,列方程求解,

OB平分∠MON时,根据∠BOM=MON,列方程求解,

OB平分∠AON时,根据∠BON=AON,列方程求解.

1)由题意得:∠MOA=2t

2)如图,

根据题意知:∠AOM=2t,∠BON=4t

当∠AOB第二次达到60°时,∠AOM+BON-MON=60°

2t+4t-180=60,解得:t=40

t=40秒时,∠AOB第二次达到60°

3)射线OB是由射线OM、射线OA、射线ON中的其中两条组成的角的平分线有以下三种情况:

OB平分∠AOM时,

AOM=BOM

t=180-4t

解得:t=36

OB平分∠MON时,

∵∠BOM=MON,即∠BOM=90°

4t=90,或4t-180=90

解得:t=22.5,或t=67.5

OB平分∠AON时,

∵∠BON=AON

4t=180-2t),

解得:t=18

综上,当t的值分别为1822.53667.5秒时,射线OB是由射线OM、射线OA、射线ON中的其中两条组成的角的平分线.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网