题目内容
【题目】如图所示,四边形ABCD,∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,求四边形ABCD的面积.
【答案】解:如图,连接BD.
在Rt△ABD中,∵∠A=90°,AD=4,AB=3,
∴BD= = =5,
∵BD2+BC2=52+122=169,DC2=132=169,
∴BD2+BC2=CD2 ,
∴△BDC是直角三角形,
∴S△DBC= BDBC= ×5×12=30,S△ABD= ADAB= ×3×4=6,
∴四边形ABCD的面积=S△BDC+S△ADB=36
【解析】如图,连接BD.首先利用勾股定理求出BD,再利用勾股定理的逆定理证明△BDC是直角三角形,分别求出△ABD,△DBC的面积即可解决问题.
【考点精析】本题主要考查了勾股定理的概念和勾股定理的逆定理的相关知识点,需要掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;如果三角形的三边长a、b、c有下面关系:a2+b2=c2,那么这个三角形是直角三角形才能正确解答此题.
练习册系列答案
相关题目