题目内容

【题目】如图放置的OAB1B1A1B2B2A2B3都是边长为2的等边三角形,点Ax轴上,点OB1B2B3都在正比例函数y=kx的图象l上,则点B2017的坐标是______

【答案】(20172017)

【解析】

根据等边三角形的性质可得出OB1=B1B2=B2B3=…=2、且直线l的解析式为y=x,进而可得出点B1B2B3的坐标,根据坐标的变化即可得出变化规律“Bnnn,依此规律即可得出结论.

解:∵△OAB1B1A1B2B2A2B3都是边长为2的等边三角形,

OB1=B1B2=B2B3=…=2,且直线l的解析式为y=x

B11),B222),B333),

Bnnn),

B201720172017).

故答案为:(20172017).

练习册系列答案
相关题目

【题目】(本小题满分10分)

问题提出:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?

问题探究:不妨假设能搭成种不同的等腰三角形,为探究之间的关系,我们可以从特殊入手,通过试验、观察、类比,最后归纳、猜测得出结论.

探究一:

3根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?

此时,显然能搭成一种等腰三角形。所以,当时,

4根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?

只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形

所以,当时,

5根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?

若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形

若分为2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形

所以,当时,

6根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?

若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形

若分为2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形

所以,当时,

综上所述,可得表


3

4

5

6


1

0

1

1

探究二:

7根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?

(仿照上述探究方法,写出解答过程,并把结果填在表中)

分别用8根、9根、10根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?

(只需把结果填在表中)


7

8
span>

9

10






你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,……

解决问题:用根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?

(设分别等于,其中是整数,把结果填在表中)











问题应用:用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(要求写出解答过程)

其中面积最大的等腰三角形每个腰用了__________________根木棒。(只填结果)

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网