题目内容
【题目】如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90,点D为AB边上的一点,
(1)试说明:∠EAC=∠B ;(2)若AD=10,BD=24,求DE的长.
【答案】(1)见解析;(2)DE=26
【解析】试题分析:(1)由于△ACB与△ECD都是等腰直角三角形,CD=CE,CB=CA,∠B=∠CAB=45°,∠ACB=∠ECD=90°,于是∠ACE+∠ACD=∠ACD+∠BCD,根据等式性质可得∠ACE=∠BCD,利用SAS可证△ACE≌△BCD,利用全等三角形的对应角相等即可解答;
(2)根据△ACE≌△BCD,于是∠EAC=∠B=45°,AE=BD=24,易求∠EAD=90°,再利用勾股定理可求DE=26.
解:(1)∵∠ACB=∠ECD=90°,
∴∠ACB﹣∠ACD=∠ECD﹣∠ACD,
∴∠ECA=∠DCB,
∵△ACB和△ECD都是等腰三角形,
∴EC=DC,AC=BC,
在△ACE和△BCD中,
,
∴△ACE≌△BCD,
∴∠EAC=∠B.
(2)∵△ACE≌△BCD,
∴AE=BD=24,
∵∠EAC=∠B=45°
∴∠EAD=∠EAC+∠CAD=90°,
∴在Rt△ADE中,DE2=EA2+AD2,
∴DE2=102+242,
∴DE=26.
练习册系列答案
相关题目