题目内容
【题目】如图,在笔直的海岸线l上有A、B两个观测站,A在B的正东方向,AB=(+1)km,小船在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°方向.
(1)求点P到海岸线l的距离;
(2)小船从点P处沿射线AP的方向航行一段时间后,到达点C处,此时,从B测得小船在北偏西15°的方向,求点C与点B之间的距离.(友情提示:结果都保留根号)
【答案】(1)点P到海岸线l的距离为1km;(2)点C与点B之间的距离为km.
【解析】
试题解析:(1)如图,过点P作PD⊥AB于点D.设PD=xkm.
在Rt△PBD中,∠BDP=90°,∠PBD=90°-45°=45°,
∴BD=PD=xkm.
在Rt△PAD中,∠ADP=90°,∠PAD=90°-60°=30°,
∴AD=PD=xkm.
∵BD+AD=AB,
∴x+x=+1,
x=1,
∴点P到海岸线l的距离为1km;
(2)如图,过点B作BF⊥AC于点F.
根据题意得:∠ABC=105°,
在Rt△ABF中,∠AFB=90°,∠BAF=30°,
∴BF=AB=km.
在△ABC中,∠C=180°-∠BAC-∠ABC=45°.
在Rt△BCF中,∠BFC=90°,∠C=45°,
∴BC=BF=km,
∴点C与点B之间的距离为km.
练习册系列答案
相关题目