题目内容
【题目】已知:如图1,在中,,∠ABC=30°,,点、E分别是边、AC上动点,点不与点、重合,DE∥BC.
(1)如图1,当AE=1时,求长;
(2)如图2,把沿着直线翻折得到,设
①当点F落在斜边上时,求的值;
② 如图3,当点F落在外部时,EF、DF分别与相交于点H、G,如果△ABC和△DEF重叠部分的面积为,求与的函数关系式及定义域.(直接写出答案)
【答案】(1)BD=;(2)①x=2;②.
【解析】
(1)根据DE∥BC,可得∠ADE=30°,然后分别利用三角函数求出AB和AD即可;
(2)①设,则AE=EF=4-x,然后证明△CEF是等边三角形即可解决问题;
②由①可知CE=x,AE=EF=4-x,△CEF是等边三角形,然后分别求出HF、FG和AD,利用三角形面积公式计算出和,进而得到,然后根据列式整理,并求出定义域即可.
解:(1)∵,∠ABC=30°,,AE=1,
∴,
∵DE∥BC,
∴∠ADE=30°,
∴,
∴BD=AB-AD=;
(2)①设,则AE=4-x,
∴EF=4-x,
∵∠ADE=∠B =30°,
∴∠AED=∠C =60°,
∴∠CEF=180°-60°-60°=60°,
∴△CEF是等边三角形,
∴CE=EF,即x=4-x,
∴x=2;
②由①可知CE=x,AE=EF=4-x,△CEF是等边三角形,
∴HF=EF-EH=4-x-x=4-2x,∠FHG=∠CHE=60°,
∵∠F=∠A=90°,
∴FG=HF=,
∴,
∵AE= 4-x,∠ADE=30°,
∴,
∴,
∴,
∴,
∵当x=2时,点F落在斜边上,
∴定义域为:,
即.
【题目】车间有20名工人,某一天他们生产的零件个数统计如下表:
生产零件的个数(个) | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
工人人数(人) | 1 | 1 | 6 | 4 | 2 | 2 | 2 | 1 | 1 |
(1)求这一天20名工人生产零件的平均个数;
(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?
【题目】全民健身运动已成为一种时尚,为了了解我市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷包括五个项目:A:健身房运动;B:跳广场舞;C:参加暴走团;D:散布;E:不运动.
以下是根据调查结果绘制的统计图表的一部分.
运动形式 | A | B | C | D | E |
人数 | 12 | 30 | m | 54 | 9 |
请你根据以上信息,回答下列问题:
(1)接受问卷调查的共有 人,图表中的m= ,n= ;
(2)统计图中,A类所对应的扇形圆心角的度数为 ;
(3)根据调查结果,我市市民最喜爱的运动方式是 ,不运动的市民所占的百分比是 ;
(4)我市碧沙岗公园是附近市民喜爱的运动场所之一,每晚都有“暴走团”活动,若最邻近的某社区约有1500人,那么估计一下该社区参加碧沙岗“暴走团”的大约有多少人?