题目内容
下列四个图案中,是轴对称图形的是 ( )
A. B. C. D.
已知抛物线C:y=x2﹣2x+1的顶点为P,与y轴的交点为Q,点F(1,).
(1)求tan∠OPQ的值;
(2)将抛物线C向上平移得到抛物线C′,点Q平移后的对应点为Q′,且FQ′=OQ′.
①求抛物线C′的解析式;
②若点P关于直线Q′F的对称点为K,射线FK与抛物线C′相交于点A,求点A的坐标.
如图,现分别旋转两个标准的转盘,则转盘所转到的两个数字之积为奇数的概率是( )
若关于x的方程无解,则a=_________.
如果把中的x与y都扩大为原来的10倍,那么这个代数式的值( )
A. 扩大为原来的10倍 B. 扩大为原来的5倍
C. 缩小为原来的 D. 不变
2017年中秋节期间,某商城隆重开业,某商家有计划选购甲、乙两种礼盒作为开业期间给予买家的礼品,已知甲礼盒的单价是乙礼盒单价的1.5倍;用600元单独购买甲种礼盒比单独购买乙种礼盒要少10个.
(1)求甲、乙两种礼盒的单价分别为多少元?
(2)若商家计划购买这两种礼盒共40个,且投入的经费不超过1050元,则购买的甲种礼盒最多买多少个?
若关于x的分式方程无解,则m的值为 .
阅读材料:已知,如图(1),在面积为S的△ABC中, BC=a,AC=b, AB=c,内切圆O的半径为r连接OA、OB、OC,△ABC被划分为三个小三角形.
∴.
(1)类比推理:若面积为S的四边形ABCD存在内切圆(与各边都相切的圆),如图(2),各边长分别为AB=a,BC=b,CD=c,AD=d,求四边形的内切圆半径r;
(2)理解应用:如图(3),在等腰梯形ABCD中,AB∥DC,AB=21,CD=11,AD=13,⊙O1与⊙O2分别为△ABD与△BCD的内切圆,设它们的半径分别为r1和r2,求的值.
函数y=2x2﹣x﹣1的图象经过点( )
A. (﹣1,1) B. (1,1) C. (0,1) D. (1,0 )