题目内容
如图,抛物线与轴交于两点,与轴相交于点.连结AC、BC,B、C两点的坐标分别为B(1,0)、,且当x=-10和x=8时函数的值相等.
1.求a、b、c的值;
2.若点同时从点出发,均以每秒1个单位长度的速度分别沿边运动,其中一个点到达终点时,另一点也随之停止运动.连结,将沿翻折,当运动时间为几秒时,点恰好落在边上的处?并求点的坐标及四边形的面积;
3.上下平移该抛物线得到新的抛物线,设新抛物线的顶点为D,对称轴与x轴的交点为E,若△ODE与△OBC相似,求新抛物线的解析式。
1.
∵当x=-10和x=8时函数的值相等
∴抛物线的对称轴为直线x=-1,
由题意得:a+b+c=0,c=,
∴
2.令y=0,则 x=-3或1,∴A(-3,0)易得
∴△ABC为直角三角形,∠ACB=90°,∠A=30°,∠B=60°
∴BM=BN=PN=PM,∴四边形BNPM为菱形.
设运动t秒后点B在AC上,
∵PN∥AB,∴
过P作PE⊥AB于E,在RT△PBN中,
,四边形的面积=
3.
① 当时;
② 当时;
③ 当时
④ 当时
解析:略
练习册系列答案
相关题目