题目内容
【题目】如图,矩形ABCD中,AB=6,AD=8,点E在BC边上,且BE:EC=1:3.动点P从点B出发,沿BA运动到点A停止.过点E作EF⊥PE交边AD或CD于点F,设M是线段EF的中点,则在点P运动的整个过程中,点M运动路线的长为__________.
【答案】9.
【解析】
过点M作GH⊥AD,证明△EGM≌△FHM,得到MG=MH,从而可知:点M的轨迹是一条平行于BC的线段,然后证明△EF1A∽△∠EF1F2,求得F1F2=18,最后根据三角形中位线定理可求得答案.
解:∵AD∥CB,GH⊥AD,
∴GH⊥BC.
在△EGM和△FHM中,
∴△EGM≌△FHM.
∴MG=MH.
∴点M的轨迹是一条平行于BC的线段.
当点P与B重合时,AF1=BE=2,
当点P与点A重合时,∠F2+∠EAF1=90°,∠AEF1+∠EAF1=90°,
∴∠F2=∠AEF1.
∵∠EF1A=∠EF1F2,
∴△EF1A∽△∠F2F1E.
∴,
∴,
∴=18,
∵M1M2是△EF1F2的中位线,
∴M1M2=F1F2=9.
故答案为:9.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】为了提高学生汉字书写的能力,增强保护汉字的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试方法是:听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为x(分),且50≤x<100,将其按分数段分为五组,绘制出以下不完整表格:
组别 | 成绩x(分) | 频数(人数) | 频率 |
一 | 50≤x<60 | 2 | 0.04 |
二 | 60≤x<70 | 10 | 0.2 |
三 | 70≤x<80 | 14 | b |
四 | 80≤x<90 | a | 0.32 |
五 | 90≤x<100 | 8 | 0.16 |
请根据表格提供的信息,解答以下问题:
(1)直接写出表中a= , b=;
(2)请补全右面相应的频数分布直方图;
(3)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为 .
(4)请根据得到的统计数据,简要分析这些同学的汉字书写能力,并为提高同学们的书写汉字能力提一条建议(所提建议不超过20字)