题目内容

【题目】如图,在等腰RtABC中,∠C=90°,AC=4,矩形DEFG的顶点D、G分别在AC、BC上,边EFAB上.

(1)求证:△AED∽△DCG;

(2)若矩形DEFG的面积为4,求AE的长.

【答案】(1)见解析;(2) .

【解析】

(1)利用等腰三角形的性质及正方形的性质可求得∠A=CDG,DEA=C,则可证得AED∽△DCG;

(2)设AE=x,利用矩形的性质及等腰三角形的性质可求得BF=FG=DE=AE=x,从而可表示出EF,结合矩形的面积可得到关于x的方程,则可求得x的值,即可求得AE的长.

(1)证明:∵△ABC是等腰直角三角形,∠C=90°,

∴∠B=A=45°,

∵四边形DEFG是矩形,

∴∠AED=DEF=90°,DGAB,

∴∠CDG=A,

∵∠C=90°,

∴∠AED=C,

∴△AED∽△DCG;

(2)设AE的长为x,

∵等腰RtABC中,∠C=90°,AC=4,

∴∠A=B=45°,AB=4

∵矩形DEFG的面积为4,

DEFE=4,AED=DEF=BFG=90°,

BF=FG=DE=AE=x,

EF=4-2x,

x(4-2x)=4,

解得x1=x2=

AE的长为

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网