题目内容

【题目】如图,已知A(3,0),B(0,﹣1),连接AB,过B点作AB的垂线段BC,使BA=BC,连接AC.

(1)如图1,求C点坐标;

(2)如图2,若P点从A点出发沿x轴向左平移,连接BP,作等腰直角△BPQ,连接CQ,当点P在线段OA上,求证:PA=CQ;

(3)在(2)的条件下若C、P,Q三点共线,求此时∠APB的度数及P点坐标.

【答案】(1)C点坐标为(1,﹣4);(2)见解析;(3)P点坐标为(1,0).

【解析】

(1)作CHy轴于H,证明ABO≌△BCH,根据全等三角形的性质得到BH=OA=3,CH=OB=1,求出OH,得到C点坐标;

(2)证明PBA≌△QBC,根据全等三角形的性质得到PA=CQ;

(3)根据C、P,Q三点共线,得到∠BQC=135°,根据全等三角形的性质得到∠BPA=BQC=135°,根据等腰三角形的性质求出OP,得到P点坐标.

(1)作CHy轴于H,

则∠BCH+CBH=90°,

ABBC,

∴∠ABO+CBH=90°,

∴∠ABO=BCH,

ABOBCH中,

∴△ABO≌△BCH,

BH=OA=3,CH=OB=1,

OH=OB+BH=4,

C点坐标为(1,﹣4);

(2)∵∠PBQ=ABC=90°,

∴∠PBQ﹣ABQ=ABC﹣ABQ,即∠PBA=QBC,

PBAQBC中,

∴△PBA≌△QBC,

PA=CQ;

(3)∵△BPQ是等腰直角三角形,

∴∠BQP=45°,

C、P,Q三点共线时,∠BQC=135°,

由(2)可知,PBA≌△QBC,

∴∠BPA=BQC=135°,

∴∠OPB=45°,

OP=OB=1,

P点坐标为(1,0).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网