题目内容

【题目】已知:如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF. 求证:四边形BCFE是菱形.

【答案】解:∵BE=2DE,EF=BE, ∴EF=2DE.
∵D、E分别是AB、AC的中点,
∴BC=2DE且DE∥BC.
∴EF=BC.
又EF∥BC,
∴四边形BCFE是平行四边形.
又EF=BE,
∴四边形BCFE是菱形.
【解析】由题意易得,EF与BC平行且相等,∴四边形BCFE是平行四边形.又EF=BE,∴四边形BCFE是菱形.
【考点精析】利用菱形的判定方法对题目进行判断即可得到答案,需要熟知任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形.已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网