题目内容
七年级我们曾学过“两点之间线段最短”的知识,常可利用它来解决两条线段和最小的相关问题,下面是大家非常熟悉的一道习题:如图1,已知,A,B在直线l的同一侧,在l上求作一点,使得PA+PB最小.
我们只要作点B关于l的对称点B′,(如图2所示)根据对称性可知,PB=PB'.因此,求AP+BP最小就相当于求AP+PB′最小,显然当A、P、B′在一条直线上时AP+PB′最小,因此连接AB',与直线l的交点就是要求的点P.
有很多问题都可用类似的方法去思考解决.
探究:
(1)如图3,正方形ABCD的边长为2,E为BC的中点,P是BD上一动点.连接EP,CP,则EP+CP的最小值是______
【答案】分析:(1)由正方形的性质可得点A是点C关于BD的对称点,连接AE,则AE就是EP+CP的最小值;
(2)找点C关于x轴的对称点C',连接AC',则AC'与x轴的交点即为点D的位置,先求出直线AC'的解析式,继而可得出点D的坐标.
(3)分别作点A关于OM的对称点A'、关于ON的对称点A'',连接A'A'',则A'A''与OM交点为点B的位置,与ON交点为C的位置.
解答:解:(1)∵点A是点C关于BD的对称点,连接AE,则AE就是EP+CP的最小值,
∴EP+CP的最小值=AE=;
(2)作点C关于x轴的对称点C',连接AC',则AC'与x轴的交点即为点D的位置,
∵点C'坐标为(0,-2),点A坐标为(6,4),
∴直线C'A的解析式为:y=x-2,
故点D的坐标为(2,0);
(3)分别作点A关于OM的对称点A'、关于ON的对称点A'',连接A'A'',则A'A''与OM交点为点B的位置,与ON交点为C的位置;
如图所示:点B、C即为所求作的点.
点评:此题考查了利用轴对称求解最短路径的问题,求解模式题意已经给出,注意仔细理解,灵活运用题目所给的信息.
(2)找点C关于x轴的对称点C',连接AC',则AC'与x轴的交点即为点D的位置,先求出直线AC'的解析式,继而可得出点D的坐标.
(3)分别作点A关于OM的对称点A'、关于ON的对称点A'',连接A'A'',则A'A''与OM交点为点B的位置,与ON交点为C的位置.
解答:解:(1)∵点A是点C关于BD的对称点,连接AE,则AE就是EP+CP的最小值,
∴EP+CP的最小值=AE=;
(2)作点C关于x轴的对称点C',连接AC',则AC'与x轴的交点即为点D的位置,
∵点C'坐标为(0,-2),点A坐标为(6,4),
∴直线C'A的解析式为:y=x-2,
故点D的坐标为(2,0);
(3)分别作点A关于OM的对称点A'、关于ON的对称点A'',连接A'A'',则A'A''与OM交点为点B的位置,与ON交点为C的位置;
如图所示:点B、C即为所求作的点.
点评:此题考查了利用轴对称求解最短路径的问题,求解模式题意已经给出,注意仔细理解,灵活运用题目所给的信息.
练习册系列答案
相关题目
七年级我们曾学过“两点之间线段最短”的知识,常可利用它来解决两条线段和最小的相关问题,下面是大家非常熟悉的一道习题:
如图1,已知,A,B在直线l的同一侧,在l上求作一点,使得PA+PB最小.
我们只要作点B关于l的对称点B′,(如图2所示)根据对称性可知,PB=PB'.因此,求AP+BP最小就相当于求AP+PB′最小,显然当A、P、B′在一条直线上时AP+PB′最小,因此连接AB',与直线l的交点,就是要求的点P.
有很多问题都可用类似的方法去思考解决.
探究:
【小题1】如图3,正方形ABCD的边长为2,E为BC的中点, P是BD上一动点.连结EP,CP,则EP+CP的最小值是________;
运用:
【小题2】如图4,平面直角坐标系中有三点A(6,4)、B(4,6)、C(0,2),在x轴上找一点D,使得四边形ABCD的周长最小,则点D的坐标应该是 ;
操作:
【小题3】如图5,A是锐角MON内部任意一点,在∠MON的两边OM,ON上各求作一点B,C,组成△ABC,使△ABC周长最小.(不写作法,保留作图痕迹)
如图1,已知,A,B在直线l的同一侧,在l上求作一点,使得PA+PB最小.
|
|
有很多问题都可用类似的方法去思考解决.
探究:
【小题1】如图3,正方形ABCD的边长为2,E为BC的中点, P是BD上一动点.连结EP,CP,则EP+CP的最小值是________;
运用:
【小题2】如图4,平面直角坐标系中有三点A(6,4)、B(4,6)、C(0,2),在x轴上找一点D,使得四边形ABCD的周长最小,则点D的坐标应该是 ;
操作:
【小题3】如图5,A是锐角MON内部任意一点,在∠MON的两边OM,ON上各求作一点B,C,组成△ABC,使△ABC周长最小.(不写作法,保留作图痕迹)
七年级我们曾学过“两点之间线段最短”的知识,常可利用它来解决两条线段和最小的相关问题,下面是大家非常熟悉的一道习题:
如图1,已知,A,B在直线l的同一侧,在l上求作一点,使得PA+PB最小.
|
|
有很多问题都可用类似的方法去思考解决.
探究:
【小题1】如图3,正方形ABCD的边长为2,E为BC的中点, P是BD上一动点.连结EP,CP,则EP+CP的最小值是________;
运用:
【小题2】如图4,平面直角坐标系中有三点A(6,4)、B(4,6)、C(0,2),在x轴上找一点D,使得四边形ABCD的周长最小,则点D的坐标应该是 ;
操作:
【小题3】如图5,A是锐角MON内部任意一点,在∠MON的两边OM,ON上各求作一点B,C,组成△ABC,使△ABC周长最小.(不写作法,保留作图痕迹)