题目内容

【题目】如图1,正方形纸片ABCD的边长为2,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点P,EF、GH分别是折痕(如图2).设AE=x(0<x<2),给出下列判断:
①当x=1时,点P是正方形ABCD的中心;
②当x= 时,EF+GH>AC;
③当0<x<2时,六边形AEFCHG面积的最大值是
④当0<x<2时,六边形AEFCHG周长的值不变.
其中正确的是(写出所有正确判断的序号).

【答案】①④
【解析】解:(1)正方形纸片ABCD,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点P,

∴△BEF和△DGH是等腰直角三角形,

∴当AE=1时,重合点P是BD的中点,

∴点P是正方形ABCD的中心;

故①结论正确,(2)正方形纸片ABCD,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点P,

∴△BEF∽△BAC,

∵x=

∴BE=2﹣ =

= ,即 =

∴EF= AC,

同理,GH= AC,

∴EF+GH=AC,

故②结论错误,(3)六边形AEFCHG面积=正方形ABCD的面积﹣△EBF的面积﹣△GDH的面积.

∵AE=x,

∴六边形AEFCHG面积=22 BEBF﹣ GDHD=4﹣ ×(2﹣x)(2﹣x)﹣ xx=﹣x2+2x+2=﹣(x﹣1)2+3,

∴六边形AEFCHG面积的最大值是3,

故③结论错误,(4)当0<x<2时,

∵EF+GH=AC,

六边形AEFCHG周长=AE+EF+FC+CH+HG+AG=(AE+CH)+(FC+AG)+(EF+GH)=2+2+2 =4+2

故六边形AEFCHG周长的值不变,

故④结论正确.

所以答案是:①④.

【考点精析】本题主要考查了正方形的性质和翻折变换(折叠问题)的相关知识点,需要掌握正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形;折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网