题目内容

如图,在平面直角坐标系xOy中,直线与x轴,y轴分别交于点A,点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处  

(1)求AB的长和点C的坐标;
(2)求直线CD的解析式  
(1)10,(16,0)   (2)

试题分析:(1)在平面直角坐标系xOy中,直线与x轴,y轴分别交于点A,点B,当x=0时, y=,所以B点的坐标为(0,8),所以OA=8,当y=0,则,解得x=6,那么A点的坐标为(6,0),所以OB=6,因此AB的长=;若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处,点B的坐标为(0,8),根据折叠的特征AB=AC,所以OC=OA+AC=6+10=16,所以点C的坐标为(16,0)
(2)点D在y轴的负半轴上,由(1)知B点的坐标为(0,8),所以点D的坐标为(0,-8),由(1)知点C的坐标为(16,0),因为直线CD过点C、D,所以设直线CD的解析式为y=kx+b,则,解得,所以直线CD的解析式
点评:本题考查一次函数,勾股定理,折叠,解答本题需要掌握用待定系数法求一次函数的解析式,熟悉勾股定理的内容,熟悉折叠的性质
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网