题目内容

如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④SFGC=3.其中正确结论的个数是(  )
A.1B.2 C.3D.4
C.

试题分析:①正确.因为AB=AD=AF,AG=AG,∠B=∠AFG=90°,
∴Rt△ABG≌Rt△AFG(HL);
②正确.因为:EF=DE=CD=2,设BG=FG=x,则CG=6﹣x.在直角△ECG中,根据勾股定理,得(6﹣x)2+42=(x+2)2,解得x=3.所以BG=3=6﹣3=GC;
③正确.∵CG=BG,BG=GF,
∴CG=GF,
∴△FGC是等腰三角形,∠GFC=∠GCF.
又∵Rt△ABG≌Rt△AFG;
∴∠AGB=∠AGF,∠AGB+∠AGF=180°﹣∠FGC=∠GFC+∠GCF,
∴∠AGB=∠AGF=∠GFC=∠GCF,
∴AG∥CF;
④错误.
∵SGCE=GC•CE=×3×4=6
∵GF=3,EF=2,△GFC和△FCE等高,
∴SGFC:SFCE=3:2,
∴SGFC=×6=≠3.
故不正确.
故选C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网